5 research outputs found

    A fourth order symplectic and conjugate-symplectic extension of the midpoint and trapezoidal methods

    Get PDF
    The paper presents fourth order Runge–Kutta methods derived from symmetric Hermite– Obreshkov schemes by suitably approximating the involved higher derivatives. In particular, starting from the multi-derivative extension of the midpoint method we have obtained a new symmetric implicit Runge–Kutta method of order four, for the numerical solution of first-order differential equations. The new method is symplectic and is suitable for the solution of both initial and bound-ary value Hamiltonian problems. Moreover, starting from the conjugate class of multi-derivative trapezoidal schemes, we have derived a new method that is conjugate to the new symplectic method

    Computation of higher order Lie derivatives on the Infinity Computer

    Get PDF
    In this paper, we deal with the computation of Lie derivatives, which are required, for example, in some numerical methods for the solution of differential equations. One common way for computing them is to use symbolic computation. Computer algebra software, however, might fail if the function is complicated, and cannot be even performed if an explicit formulation of the function is not available, but we have only an algorithm for its computation. An alternative way to address the problem is to use automatic differentiation. In this case, we only need the implementation of the algorithm that evaluates the function in terms of its analytic expression in a programming language, but we cannot use this if we have only a compiled version of the function. In this paper, we present a novel approach for calculating the Lie derivative of a function, even in the case where its analytical expression is not available, that is based on the Infinity Computer arithmetic. A comparison with symbolic and automatic differentiation shows the potentiality of the proposed technique

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]

    No full text
    The authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order p + r , where r = 2 and p is the order of the method. This generalization of conjugate-symplecticity states that the methods conserve quadratic first integrals and the Hamiltonian function over time intervals of length O ( h − r ) . Theorem 1 of the above mentioned paper is then replaced by a new one. All the other results in the paper do not change. Two new figures related to the already considered Kepler problem are also added
    corecore