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Abstract: The paper presents fourth order Runge–Kutta methods derived from symmetric Hermite–
Obreshkov schemes by suitably approximating the involved higher derivatives. In particular, starting
from the multi-derivative extension of the midpoint method we have obtained a new symmetric
implicit Runge–Kutta method of order four, for the numerical solution of first-order differential
equations. The new method is symplectic and is suitable for the solution of both initial and bound-
ary value Hamiltonian problems. Moreover, starting from the conjugate class of multi-derivative
trapezoidal schemes, we have derived a new method that is conjugate to the new symplectic method.

Keywords: ordinary differential equations; Hamiltonian systems; multi-derivative methods;
simplectic methods

1. Introduction

In the present work, we will consider a suitable modification of multi-derivative one-
step methods derived in [1] for the numerical solution of first order differential equations

y′(t) = f (y(t)), t ∈ [t0, T], (1)

with sufficiently regular vector field f : Rm → Rm, subject to initial conditions y(t0) = y0,
or boundary conditions g(y(t0), y(T)) = 0. The methods we are going to introduce are
especially suited for the long time simulation of canonical Hamiltonian problems

y′ = J∇H(y), y(t0) = y0 ∈ R2m, (2)

with

y =

(
q
p

)
, q, p ∈ Rm, J =

(
O I
−I O

)
, (3)

where q and p are the generalized coordinates and conjugate momenta, H : R2m → R is the
Hamiltonian function and I stands for the identity matrix of dimension m. The investigation
of numerical methods for integrating differential equations such as (2) forms a branch
of numerical analysis called Geometric Integration. Problem (2) admits the Hamiltonian
function H(y) as a first integral, namely H(y(t)) = H(y0) for t ≥ t0. It may admit
additional constant of motions bringing important physical properties of the system that
general-purpose codes would fail to reproduce in a long time simulation. Rather than
focusing on the control of the accuracy in a given time interval of finite length, geometric
integrators aim at reproducing the correct global behavior of the trajectory in the phase
space, trying to retain the geometric features of the system itself. We refer the reader to the
monographs [2–4] for the fundamental theory on the numerical treatment of conservative
problems. Examples of the relevant role of geometric integration in several application
areas may be found in the review papers [5–7] and references therein.

Mathematics 2021, 9, 1103. https://doi.org/10.3390/math9101103 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9716-7370
https://orcid.org/0000-0003-1072-9578
https://www.mdpi.com/article/10.3390/math9101103?type=check_update&version=1
https://doi.org/10.3390/math9101103
https://doi.org/10.3390/math9101103
https://doi.org/10.3390/math9101103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9101103
https://www.mdpi.com/journal/mathematics


Mathematics 2021, 9, 1103 2 of 15

In [8,9] we analyzed two classes of one step symmetric Hermite–Obreshkov schemes
with interesting symplectic properties and in [1] we focused on the symplectic properties
of two families of multi-derivative high-order one-step methods which contains the well-
known implicit midpoint and trapezoidal methods as seed formulae. Here, we consider a
proper discretization of the Lie derivative appearing in these formulae, to define Runge–
Kutta schemes with geometric properties. In the following, y1 = Φh(y0) denotes a generic
one-step method of order p > 0 that provides the numerical solution of (2) with stepsize
of integration h > 0. We recall a few definitions and properties which are relevant for our
analysis. The one-step method Φh is called:

- symplectic, if its Jacobian matrix is symplectic, that is

∂Φh(y)>

∂y
J

∂Φh(y)
∂y

= J, for all y ∈ R2m. (4)

- conjugate-symplectic, if it is topologically conjugate to a symplectic method y1 = Ψh(y0),
which means that a global change of coordinates χh(y) = y + O(h) exists such that

Φh = χh ◦Ψh ◦ χ−1
h . (5)

- conjugate-symplectic up to order r, if there exists a global change of coordinates
χh(y) = y + O(hp) such that (5) holds true, with the map Ψh satisfying

∂Ψh(y)>

∂y
J

∂Ψh(y)
∂y

= J + O(hp+r+1). (6)

A symplectic method inherits relevant properties of the flow associated with a canon-
ical Hamiltonian problem such as volume preservation of closed surfaces in the phase
space under time evolution. For a detailed analysis of symplectic Runge–Kutta methods,
see the monographs [2–4]. Further relevant features are the conservation of quadratic first
integrals, and near conservation of the Hamiltonian function over exponentially long times
([4], page 366).

Conjugate-symplecticity leave these properties essentially unchanged (see [4] page 222
and [10]). In fact, from (5) we have

yn = Φn
h(y0) = (χh ◦Ψh ◦ χ−1

h )n(y0) = χh ◦Ψn
h ◦ χ−1

h (y0).

The third property listed above is clearly a relaxation of conjugate-symplecticity. In this
case, the method Φh(y) nearly conserves all quadratic first integrals and the Hamiltonian
function over time intervals of length O(h−r) (see [11]).

The starting point of our investigation is the class of Hermite–Obreshkov (HO) linear
multistep methods [12].

k

∑
i=0

αiyn+i =
l

∑
j=1

hj
k

∑
i=0

β jiy
(j)
n+i. (7)

Here y(j)
n+i denotes an approximation to the j-th derivative of the solution y(t) at tn+i,

with tn+i = tn + ih and is defined as

y(j)
n := Dj−1 f (yn), j = 1, 2, . . . , l. (8)

For a given integer k ≥ 0 and u ∈ Rm, Dk( f (u)) is the k-th order Lie derivative of the
vector field f , defined as the k-th time derivative of f (y(t)) formally computed at y(t) = u,
assuming that y(t) satisfies the differential equation in (1) (D0 = I is the identity operator).
We have used the subscript to define this operator to avoid confusion with the same order
classical derivative operator denoted by Dk. Of course, the two operators take the same
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values when applied to the projection of the true solution y(t) on the mesh points but,
in general, they will differ. Recently, we have introduced and analyzed four different one
step (k = 1) HO methods:

- Euler–Maclaurin methods: higher derivative collocation methods deriving their name
from the well-known Euler–Maclaurin integration formula. In [9] it has been shown
that these integrators are conjugate-symplectic up to order p + 2.

- BS Hermite–Obreshkov methods: based on a special subclass of Hermite–Obreshkov
methods which admit a continuous spline extension [8], these formulae are a multi-
derivative generalization of the BS linear multistep methods derived in [13] and
generalized in the field of quasi-interpolation in [14–16]. In [8] it has been shown that
the BS Hermite–Obreshkov methods are conjugate-symplectic up to order p + 2.

- multi-derivative midpoint and trapezoidal methods: generalizations of the classical midpoint
and trapezoidal methods, these formulae are derived by a combination of the implicit
Taylor and the explicit Taylor expansion up to a given order [1]. The multi-derivative
midpoint (MDMP) and trapezoidal (MDTR) methods are conjugate-symplectic up to
order p + 2.

The analysis of these classes of multi-derivative methods has been also motivated by
the possibility of computing the derivative efficiently, by exploiting the Infinity Computer
arithmetic as described in [17–19]. In fact, the analytical computation of the j-th derivative
y(j) involves a tensor of order j, which evidently heavily affects the computational cost
associated with the implementation of the method. In this respect, the use of the Infinity
Computer is able to accurately evaluate y(j)(z) without requiring its explicit expression
in terms of the derivatives of f . In this paper, we consider the more natural approach
that uses finite differences to approximate the Lie derivatives appearing in a given multi-
derivative formula.

Since a certain degree of freedom is allowed in the choice of the derivative discretiza-
tion stepsize, it turns out that the final full discretized formula may exhibit more favorable
geometric properties with respect to the original one. This is the case for two special
methods in the classes we are going to introduce: they form a pair of symplectic and
conjugate-symplectic Runge–Kutta integrators that originate from the midpoint method
and its conjugate-symplectic counterpart, namely the trapezoidal methods. To the best of
our knowledge, no couple of symplectic and conjugate-symplectic Runge–Kutta methods
of order higher than two has been devised up to now, so their existence constitutes the core
result of the paper.

In addition, we introduce and analyze a new technique for solving the nonlinear
systems emerging from the implementation of the methods. It consists of a block-diagonal
variant of the simplified Newton scheme which requires, at each integration step, a single
Jacobian evaluation of the vector field and a single LU factorization of a matrix having
the same size of the continuous problem. Moreover, the diagonal structure of the linear
systems involved in the iterative procedure, makes it suitable for a parallel implementation.
A comparison of the new integrators with other existing symplectic integrators in terms of
their efficiency is a delicate question and will not be addressed here.

The paper is organized as follows. In Section 2 we illustrate the multi-derivative
fourth-order extensions of the midpoint and trapezoidal methods, while their modifica-
tions obtained by approximating the Lie derivatives are introduced in Sections 3 and 4
respectively. Section 5 analyzes the above-mentioned nonlinear systems solver needed
to advance the solution in time. Some numerical illustrations are presented in Section 6.
Finally, Section 7 contains some concluding remarks.

2. MDMP and MDTR Methods

The multi-derivative generalization of the midpoint (MP) and trapezoidal (TR) meth-
ods we are interested in is easily obtained via a standard Taylor approach by exploiting the
property that such schemes may be viewed as composition of the Implicit (IE) and Explicit
Euler (EE) methods, in direct and reverse order, applied on half the integration time-step:
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MP = EE ◦ IE:

yn+1 = yn + h f (
yn + yn+1

2
) ⇐⇒


yn+1/2 = yn +

h
2

f (yn+1/2),

yn+1 = yn+1/2 +
h
2

f (yn+1/2),

TR = IE ◦ EE:

yn+1 = yn +
h
2
( f (yn) + f (yn+1)) ⇐⇒


yn+1/2 = yn +

h
2

f (yn),

yn+1 = yn+1/2 +
h
2

f (yn+1).

We focus on the two conjugate classes of the MDMP and MDTR methods of order four.
By denoting as ET4 (IT4) the explicit (implicit) Taylor method of order four we have that

MDMP4 = ET4 ◦ IT4:

yn+1 = yn + h f (yn+1/2) +
h3

24
D2 f (yn+1/2),

⇐⇒


yn+1/2 = yn +

h
2

f (yn+1/2)−
h2

8
D1 f (yn+1/2) +

h3

48
D2 f (yn+1/2),

yn+1 = yn+1/2 +
h
2

f (yn+1/2) +
h2

8
D1 f (yn+1/2) +

h3

48
D2 f (yn+1/2),

MDTR4 = IT4 ◦ ET4:

yn+1 = yn +
h
2
( f (yn+1) + f (yn))−

h2

8
(D1 f (yn+1)− D1 f (yn)) +

h3

48
(D2 f (yn+1) + D2 f (yn)),

⇐⇒


yn+1/2 = yn +

h
2

f (yn) +
h2

8
D1 f (yn) +

h3

48
D2 f (yn),

yn+1 = yn+1/2 +
h
2

f (yn+1)−
h2

8
D1 f (yn+1) +

h3

48
D2 f (yn+1).

Here we introduce and analyze two families of methods depending on a real parameter,
which are derived by approximating the Lie derivative appearing in the formulae above
by means of suitable difference schemes. These latter are defined with the aid of auxiliary
local steps that will be exploited for this purpose. We observe that two Lie derivatives
used in the MDMP4 and MDTR4 methods are multiplied respectively by h2 and h3, so we
shall approximate them by means of symmetric difference schemes of order at least two to
preserve the symmetry and order properties of the original methods.

For the same reason, the formulae used to approximate the solution in the additional
local steps should also be at least of order two. In particular, they take the form of implicit
or explicit methods of order two so that the symmetry condition of the resulting method is
preserved. In the next two sections we introduce these new fourth-order methods.

3. Approximated MDMP

In this section, we show two generalizations of the MDMP4 method. All the presented
extensions are based on the computation of two local approximations of the solution in the
two additional steps

tn+1/2−α = tn+1/2 − αh and tn+1/2+α = tn+1/2 + αh,

where α is a real positive parameter. In all the cases to approximate the first and second Lie
derivatives we use the following standard finite differences schemes of order two:

D̂1 fn+1/2 =
f (yn+1/2+α)− f (yn+1/2−α)

2αh
,

D̂2 fn+1/2 =
f (yn+1/2+α)− 2 f (yn+1/2) + f (yn+1/2−α)

α2h2 .

(9)
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3.1. Computation of the Additional Stages Using the Standard Explicit RK Method of Order 2

Let us approximate the value of y(t) at tn+1/2−α and tn+1/2+α by using the explicit
Runge–Kutta method of order 2 backward and forward, starting at tn+1/2. The obtained val-
ues are used to compute the approximation of the derivatives using the central differences
formulas in (9). The resulting method is

Yn+ 1
2−α = yn+ 1

2
− hα fn+ 1

2
,

yn+ 1
2−α = yn+ 1

2
− hα

2
(Fn+ 1

2−α + fn+ 1
2
),

Yn+ 1
2+α = yn+ 1

2
+ hα fn+ 1

2
,

yn+ 1
2+α = yn+ 1

2
+

hα

2
(Fn+ 1

2+α + fn+ 1
2
),

yn+ 1
2
= yn +

h
2

fn+ 1
2
− h2

8
D̂1 fn+ 1

2
+

h3

48
D̂2 fn+ 1

2
,

yn+1 = yn + h fn+ 1
2
+

h3

24
D̂2 fn+ 1

2

where fn+ 1
2
= f (yn+ 1

2
), Yn+ 1

2±α are the stages of the two Runge–Kutta steps and
Fn+ 1

2±α = f (Yn+ 1
2±α). We call this method AMDMP4_RK2. Written as a Runge–Kutta

scheme the method is described by the tableau

c A
b

≡

1/2− α 1
16α + b1 − α

2 − α
2 + b3/2 0 − 1

16α + b5

1/2− α 1
16α + b1 0 −α + b3/2 0 − 1

16α + b5

1/2 1
16α + b1 0 b3/2 0 − 1

16α + b5

1/2 + α 1
16α + b1 0 α + b3/2 0 − 1

16α + b5

1/2 + α 1
16α + b1 0 α

2 + b3/2 α
2 − 1

16α + b5

b1 0 b3 0 b5

where b1 = b5 = 1/(24α2) and b3 = 1− 1/(12α2). The fourth-order conditions have been
checked by exploiting the formulas in [12] (Table 2.2 p. 148). Applying the method to
the scalar linear test problem y′ = λy, we obtain the recurrence relation yn+1 = R(hλ)yn,
where R(z) = 1 + zb>(I5 − zA)−1e is the stability function (I5 denotes the identity ma-
trix of size 5 and e = (1, 1, 1, 1, 1)>). For a general introduction to the linear stability
theory of Runge–Kutta schemes, we refer to [20] (chapter IV.3) and [21]. It turns out
that, for AMDMP4_RK2 methods, the stability function actually does not depend on the
parameter α. Setting, as usual, q = hλ, it takes the form

R(q) =
P(q)
Q(q)

=
q3 + 6q2 + 24q + 48
−q3 + 6q2 − 24q + 48

.

Since P(q) = Q(−q), we get |R(q)| = 1 on the imaginary axis and since the poles of
R(q) have a positive real part, the maximum modulus principle shows that all the formulae
in the family are precisely A-stable, that is its domain of absolute stability coincides
with C−.

In comparison with the original MDMP method we see that the computational cost
for the implementation of the new formulae decreases, because we just need to add the
computation of the two explicit steps in the nonlinear iteration.
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3.2. Approximation of the Derivative Using the Trapezoidal Scheme of Order 2

The second family of methods is derived by approximating the Lie derivatives with
the aid of the backward and forward trapezoidal schemes. The resulting method is

yn+ 1
2−α = yn+ 1

2
− hα

2
( fn+ 1

2−α + fn+ 1
2
)

yn+ 1
2+α = yn+ 1

2
+

hα

2
( fn+ 1

2+α + fn+ 1
2
)

yn+ 1
2

= yn +
h
2

fn+ 1
2
− h2

8
D̂1 fn+ 1

2
+

h3

48
D̂2 fn+ 1

2
,

yn+1 = yn + h fn+ 1
2
+

h3

24
D̂2 fn+ 1

2

Written as a Runge–Kutta scheme we have the following tableau

1/2− α − α
2 + 1

16α + 1
48α2 − α

2 + 1
2 −

1
24α2

1
16α + 1

48α2

1/2 1
16α + 1

48α2
1
2 −

1
24α2 − 1

16α + 1
48α2

1/2 + α 1
16α + 1

48α2 − α
2 + 1

2 + 1
24α2

α
2 + 1

16α + 1
48α2

1
24α2 1− 1

12α2
1

24α2

(10)

and it is easy to check that its order is four. More interestingly, within this family we may
discover a new fourth-order symplectic Runge–Kutta formula.

Theorem 1. The Runge–Kutta scheme defined by the tableau (10) is A-stable for α < 1/
√

6 and it
is symplectic if we choose α =

√
2/4.

Proof. The stability function R(q) is equal to the following rational function:

R(q) =
P(q)
Q(q)

=
−(6α2 − 1)q3 − (12α2 − 6)q2 + 24q + 48
(6α2 − 1)q3 − (12α2 − 6)q2 − 24q + 48

, (11)

from which P(q) = Q(−q) and hence |R(q)| = 1 on the imaginary axis. In order to
impose that the poles of R lie in the right-half of the complex plane, we can apply the
Routh–Hurwitz stability criterion to Q(−q) = P(q). A direct computation then leads to
the condition α < 1/

√
6 for the roots of P(q) to have negative real part. Consequently, for

these values of α, the method is precisely A-stable. A sufficient condition for symplecticity
(see [4] (Theorem 4.3) or [22]) is biaij + bjaji − bibj = 0, i, j = 1, 2, 3. It turns out that this
condition is satisfied only if we choose α =

√
2/4.

The new symplectic RK method is

1/2−
√

2
4

1
6

1
6 −

√
2

8
1
6 −

√
2

8

1/2 1
6 +

√
2

8
1
6

1
6 −

√
2

4

1/2 +
√

2
4

1
6 +

√
2

8
1
6 +

√
2

8
1
6

1
3

1
3

1
3

(12)

Symplectic Runge–Kutta schemes with three stages and order four are already known
in the literature, see for example [23]. The method (12) has the special property of being
defined as the composition of two formulae: this suggests that the method obtained by the
reverse composition is conjugate to (12), and thus we get a couple of symplectic/conjugate-
symplectic Runge–Kutta schemes that extend to the fourth-order the well-known couple
formed by the midpoint and trapezoidal methods. The conjugate-symplectic method
associated with (12) is introduced in the next section.



Mathematics 2021, 9, 1103 7 of 15

4. Approximated MDTR4 Methods

In this section, we devise two classes of methods obtained by approximating the Lie
derivatives appearing in the MDTR4 formulae: each method in these families are conjugate
to the corresponding one derived in Section 3. All the generalizations are based on the
computation of two local approximations of the solution in two additional steps depending
on a positive parameter α. This time, the new additional steps are

tn+1−α = tn+1 − αh and tn+1+α = tn+1 + αh.

To approximate the Lie derivatives, we use the same finite differences schemes of
order two used in (9) for the AMDMP4 methods:

D̂1 fn+1 =
f (yn+1+α)− f (yn+1−α)

2αh
(13)

D̂2 fn+1 =
f (yn+1+α)− 2 f (yn+1) + f (yn+1−α)

α2h2 (14)

4.1. Approximation of the Derivative Using the Standard Explicit RK Method of Order 2

As in the previous section, the first family of methods is derived by employing the
second order explicit Runge–Kutta methods to approximate the solution in the two extra
abscissae tn+1−α and tn+1+α. We get

Yn+1−α = yn+1 − hα fn+1,

yn+1−α = yn+1 − h
α

2
(Fn+1−α + fn+1),

Yn+1+α = yn+1 + hα fn+1,

yn+1+α = yn+1 + h
α

2
(Fn+1+α + fn+1),

yn+1 = yn +
h
2
( fn + fn+1)−

h2

8
(

D̂1 fn − D̂1 fn+1
)

+
h3

48
(

D̂2 fn + D̂2 fn+1
)
.

(15)

This method, denoted by AMDTR4_RK2, is symmetric and has order four. Written as
a Runge–Kutta scheme, it has s = 10 stages and the following tableau:

−α 0 − α
2 − α

2 0 0 0 0 0 0 0
−α 0 0 −α 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
α 0 0 α 0 0 0 0 0 0 0
α 0 0 α

2
α
2 0 0 0 0 0 0

1− α b1 0 b3 0 b5 b6 − α
2 − α

2 + b8 0 b10
1− α b1 0 b3 0 b5 b6 0 −α + b8 0 b10

1 b1 0 b3 0 b5 b6 0 b8 0 b10
1 + α b1 0 b3 0 b5 b6 0 α + b8 0 b10
1 + α b1 0 b3 0 b5 b6 0 α

2 + b8
α
2 b10

b1 0 b3 0 b5 b6 0 b8 0 b10

where the non null weights bi are

b1 = b10 = − 1
16α

+
1

48α2 , b3 = b8 =
1
2
− 1

24α2 , b5 = b6 =
1

16α
+

1
48α2 .
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The coefficient matrix A has a block structure with many vanishing elements. The
AMDTR4_RK2 scheme may be also cast as a parameterized implicit Runge–Kutta (PIRK)
method having the general form

Yi = viyn + (1− vi)yn+1 + h
s

∑
j=1

xi,j f (tn + cjh, Yj), i = 1, . . . s

yn+1 = yn + h
s

∑
j=1

bj f (tn + cjh, Yj),

and represented by the tableau
c v X

bT

with ci = vi + ∑s
j=1 xi,j. Notice that a PIRK is equivalent to a RK with A = X + vbT .

Order results for this class of methods are reported in [24], where the special subclass
of mono-implicit Runge–Kutta (MIRK) methods is analyzed. The MIRK class has been
investigated by many authors since it has the interesting feature that the matrix X is strictly
lower triangular. In this form, the method AMPTR_RK2 has the following tableau:

−α 0 0 − α
2 − α

2 0 0 0 0 0 0 0
−α 0 0 0 −α 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
α 0 0 0 α 0 0 0 0 0 0 0
α 0 0 0 α

2
α
2 0 0 0 0 0 0

1− α 1 0 0 0 0 0 0 − α
2 − α

2 0 0
1− α 1 0 0 0 0 0 0 0 −α 0 0

1 0 b1 0 b3 0 b5 b6 0 b8 0 b10
1 + α 1 0 0 0 0 0 0 0 α 0 0
1 + α 1 0 0 0 0 0 0 0 α

2
α
2 0

b1 0 b3 0 b5 b6 0 b8 0 b10

Separating the block involving tn with the one involving tn+1 leads to another represen-
tation of the AMDTR4_RK2 method as a one-step block method with s = 5 stages, namely

TZn+1 = e3eT
3 Zn + he3dTGn + hBGn+1,

where (see (15))

Zn =


Yn−α

yn−α

yn
Yn+α

yn+α

, Gn =


f (Yn−α)
f (yn−α)

f (yn)
f (Yn+α)
f (yn+α)

, d =


b1
0
b3
0
b5

, e3 =


0
0
1
0
0

,

T =


1 0 −1 0 0
0 1 −1 0 0
0 0 1 0 0
0 0 −1 1 0
0 0 −1 0 1

, B =


0 −α/2 −α/2 0 0
0 0 −α 0 0
b6 0 b8 0 b10
0 0 α 0 0
0 0 α/2 α/2 0

,

with T, B, d and e3 used as linear operators, to simplify the notation avoiding the explicit
use of the Kronecker products. This latter expression, besides being more compact than the
previous ones, leads to a better implementation in terms of computational efficiency.
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Applied to the test equation y′ = λy, the AMDTR4_RK2 method defines the follow-
ing recursion:

Yn+1 = (I − qT−1B)−1T−1(e3eT
3 + qe3dT)Yn = G(q)Yn

where q = hλ. The matrix G(q) has four eigenvalues equal to zero and one equal to the
following rational function:

R(q) =
P(q)
Q(q)

=
q3 + 6q2 + 24q + 48
−q3 + 6q2 − 24q + 48

.

Again we see that P(q) = Q(−q) and a direct computation shows that R(q) is analytic
in the left-half of the complex plane, so the method is precisely A-stable.

4.2. Approximation of the Derivative Using the Trapezoidal Scheme of Order 2

Approximating the solution in the additional points by the trapezoidal scheme yields

yn+1−α = yn+1 − h
α

2
( fn+1−α + fn+1),

yn+1+α = yn+1 + h
α

2
(

1
3

fn+1 + fn+1+α),

yn+1 = yn +
h
2
( fn+1 + fn)−

h2

8
(

D̂1 fn − D̂1 fn+1
)
+

h3

48
(

D̂2 fn + D̂2 fn+1
)
.

These formulae, denoted by AMDTR4_TR2, have order 4. Choosing α =
√

2/4 we get
a method which is conjugate to the corresponding method AMDMP4_TR2 defined at (12).
In block form, this method assumes the following shape:

TZn+1 = e2eT
2 Zn + he2dTGn + hBGn+1,

where

Zn =

 yn−α

yn
yn+α

, Gn =

 f (yn−α)
f (yn)

f (yn+α)

, d =

 −
1

16α + 1
48α2

1
2 −

1
24α2

1
16α + 1

48α2

, e2 =

 0
1
0

,

T =

 1 −1 0
0 1 0
0 −1 1

, B =

 −α/2 −α/2 0
d3 d2 d1
0 α/2 α/2

,

with T, B, d and e2 used as linear operators.
Applied to the test equation y′ = λy we have that the solution is defined by the

following recursion:

Yn+1 = (I − qT−1B)−1T−1(e2eT
2 + qe2dT)Yn = G(q)Yn

where q = hλ. The matrix G(q) has two vanishing eigenvalues and one eigenvalue equal
to the same rational function defined at (11). From Theorem 1, it then follows that the
formulae are precisely A-stable for α < 1/

√
6.

5. Solution of the Nonlinear Systems

In order to optimize the computational cost associated with each method derived in
the previous sections, we employ a suitable modified Newton scheme to solve the nonlinear
systems emerging from their implementation. In particular, we approximate the Jacobian
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matrix with a diagonal block-matrix with constant diagonal blocks. The derived iterative
scheme for the AMDMP methods is the following(

Is ⊗ I − h
β
(Is ⊗ J)

)(
Yr+1

n+1 −Yr
n+1

)
= −

(
Yr

n+1 − e⊗ yn
)
+ h(A⊗ I) f

(
Yr

n+1
)

(16)

where A ∈ Rs×s denotes the coefficient matrix of the method (s is the number of stages),
J ∈ Rm×m is the Jacobian matrix of the vector field f , evaluated at (tn, yn), yn is the solution
computed at the previous step tn, β is a positive parameter, while Is and I stand for the
identity matrices of size s and m respectively.

Theorem 2. The nonlinear iteration scheme (16) applied to the AMDMP4_TR2 method for the
solution of the test equations y′ = λy is convergent for Re(q) < 0 if the spectral radius ρ of the
matrix βA− I is less then one. When ρ > 1, the method converges if

|q| ∈
{

β cos θ +
√

β2(cos2 θ + ρ2 − 1)
ρ2 − 1

, −π

2
≤ θ ≤ π

2

}

Proof. The scheme (16) applied to the test equation reduces to the following iteration:

Yr+1
n+1 = q(1− q

β
)−1(A− 1

β
I)Yr

n+1 + (1− q
β
)−1e⊗ yn.

The eigenvalues of the iteration matrix are the eigenvalues of the matrix βA − I
scaled by q/(β− q). It is straightforward to check that if ρ < 1 the method is convergent
when Re(q) < 0. The region of convergence when ρ > 1 is computed by imposing that
ρ|q/β− q)| < 1.

Corollary 1. The nonlinear iteration scheme (16) with 0 < β ≤ 7 applied to the AMDMP4_TR2
with α =

√
2/4 for the solution of the test equations y′ = λy, converges if <(λ) < 0. The mini-

mum value at ∞ is ≈ 0.5637 and is attained choosing β ≈ 4.6721.

Proof. The eigenvalues of the matrix (βA − I) have absolute value less than one for
0 < β ≤ 7 with minimum value ≈ 0.5637 for β ≈ 4.6721.

Observe that the iterative scheme (16) only requires one LU factorization of size m
and the solution of the nonlinear systems could be easily performed in parallel. Depend-
ing on the structure of the problem, this is surely an interesting approach for solving
nonlinear equations.

A similar argument may be applied to the solution of the nonlinear systems arising
from the implementation of the AMDTR4_TR2 methods. The details are omitted for the
sake of brevity.

6. Numerical Illustrations

In the present section, we compare the behavior of the newly-derived formulae with
that of the original multi-derivative methods. These integrators have been applied to
the well-known Kepler problem, a super-integrable Hamiltonian system that describes
the motion of two bodies subject to Newton’s law of gravitation (see, for example [25]).
By setting the origin of the coordinate system on one of the two bodies, the Hamiltonian
function takes the form

H(q, p) =
1
2
(p2

1 + p2
2)−

1√
q2

1 + q2
2

.
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In particular, taking as initial conditions

q1(0) = 1− e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e
1− e

,

the trajectory describes an ellipse with eccentricity e in the q1 − q2 plane and is periodic
with period T = 2π. Besides the total energy H, further relevant first integrals are the
angular momentum

M(q, p) = q1 p2 − q2 p1,

and the Lenz vector A = (A1, A2, A3)
>, whose components are

A1(q, p) = p2M(q, p)− q1

||q||2
, A2(q, p) = −p1M(q, p)− q2

||q||2
, A3(q, p) = 0.

Of the four first integrals H, M, A1 and A2, only three are independent so, for example,
A1 can be neglected.

Having set e = 0.6 and h = T/200, we integrated the problem over 103 periods and
computed the error ‖yn − y0‖1 in the solution at specific times multiples of the period T,
that is for n = 200k, with k = 1, 2, . . . . All computations have been carried out on an Intel
i7 quad-core CPU with 16GB of RAM, running MATLAB R2020b.

Figures 1 and 2 report the results for the considered methods. On the top-left picture
is the absolute error of the numerical solution; the top-right picture shows the error in
the Hamiltonian function; the error in the angular momentum is drawn in the bottom-left
picture, while the bottom-right picture concerns the error in the second component of the
Lenz vector. To get more insights on the performance and conservation properties of the
symplectic AMDMP_TR2 formula, in Figure 1 we also report the results for the Gauss
method of order four. We observe that, to make the pictures more readable, the errors in
the first integrals are computed at the midpoint of each period, that is at the points tn+100.

As is expected from a symplectic or a conjugate-symplectic integrator, we can see a
linear drift in the error ‖yn − y0‖1 as the time increases. The same linear growth is experi-
enced in the Lenz invariant. The conjugate-symplectic AMDMP_TR2 scheme assures near
conservation of the Hamiltonian function and angular momentum. This latter quadratic
invariant is precisely conserved (up to machine precision) by the symplectic schemes.

In Tables 1 and 2, we compare the symplectic and conjugate-symplectic formulae with
other methods in the same families, in terms of their ability in conserving the angular
momentum. To this end, the value of α =

√
2/4 that generates the symplectic and conjugate-

symplectic schemes has been scaled by factors γ and 1/γ, for a few values of γ > 0. We
observe that when γ increases, the errors related to the decreasing values of α approach
the value of the corresponding multi-derivative methods. As was expected, the angular
momentum is exactly preserved by the symplectic scheme while the value attained at
t1/2 = t0 + h/2 is exactly preserved by the conjugate-symplectic one.
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Figure 1. Results for the fourth-order MDMP (solid lines), Gauss (dashed lines), AMDMP_TR2
(dash-dotted lines) and AMDMP_R2 (dotted lines) methods applied to the Kepler problem computed
at each period.

Figure 2. Results for the fourth-order MDTR (solid lines), Gauss (dashed lines), AMDTR_TR2 (dash-
dotted lines) and AMDTR_R2 (dotted lines) methods applied to the Kepler problem computed at
each period.
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Table 1. Error in the angular momentum for the methods in the MDMP family.

AMDMP

TR2 RK2

α
√

2
4γ

√
2γ
4

1
2γ

γ

1 5.32× 10−15 5.32× 10−15 3.60× 10−7

1.2 4.86× 10−6 6.97× 10−6 4.65× 10−6

1.4 7.81× 10−6 1.51× 10−5 7.67× 10−6

1.6 9.72× 10−6 2.45× 10−5 9.62× 10−6

1.8 1.10× 10−5 3.51× 10−5 1.09× 10−5

2.0 1.19× 10−5 4.68× 10−5 1.19× 10−5

3.0 1.42× 10−5 1.20× 10−4 1.41× 10−5

MDMP
1.60× 10−5

Table 2. Error in the angular momentum for the methods in the MDTR family, computed at the
midpoints tn+1/2. As reference value, we use the one computed at t1/2.

AMDTR AMDTR Midpoints

TR2 RK2 TR2 RK2

α
√

2
4γ

√
2γ
4

1
2γ α

√
2

4γ

√
2γ
4

1
2γ

γ γ

1 1.55× 10−5 1.55× 10−5 1.32× 10−4 1 5.88× 10−15 5.88× 10−15 3.40× 10−7

1.2 1.89× 10−5 6.46× 10−5 6.34× 10−5 1.2 4.73× 10−6 6.78× 10−6 4.52× 10−6

1.4 3.96× 10−5 1.22× 10−4 2.13× 10−5 1.4 7.59× 10−6 1.47× 10−5 7.45× 10−6

1.6 5.31× 10−5 1.88× 10−4 6.87× 10−6 1.6 9.45× 10−6 2.38× 10−5 9.35× 10−6

1.8 6.23× 10−5 2.63× 10−4 2.55× 10−5 1.8 1.07× 10−5 3.41× 10−5 1.06× 10−5

2.0 6.90× 10−5 3.45× 10−4 3.91× 10−5 2.0 1.16× 10−5 4.55× 10−5 1.15× 10−5

3.0 8.47× 10−5 8.69× 10−4 7.14× 10−5 3.0 1.38× 10−5 1.17× 10−4 1.37× 10−5

MDTR MDTR midpoints
9.730× 10−5 1.55× 10−5

To show the convergence properties of the diagonal nonlinear iteration (16) introduced
in Section 5, we solved the problem over 102 periods with sepsize h = T/N, choosing
β = 4.6721 (see Corollary 1). For comparison purposes, we also consider the use of the
standard simplified Newton scheme defined by approximating the Jacobian matrix with
(I3 ⊗ I − hA⊗ J) (compare with (16)).

In Table 3 we show for the AMDMP4_TR2 method with α =
√

2/4 the absolute error,
the computed convergence rate and the mean number of iterations needed to reach the
convergence up to machine precision for the two techniques. The scheme defined by the
block-diagonal matrix requires around 1.7 more iterations to attain convergence, but the
cost of the Jacobian factorization decreases from 27 m3 to m3. The execution times of the
two algorithms for this problem are essentially equivalent, since the computation of the
factorization is a built-in optimized function in Matlab so the differences do not consistently
show up.
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Table 3. Convergence rate and mean number of approximated Newton iterations for the
AMDMP4_TR2 method with α =

√
2/4.

N Error Order Iterations Per Step
(Simplified Newton)

Iterations Per Step
(Scheme (16))

100 4.6981× 10−2 5.18 9.32
200 3.0275× 10−3 3.95 4.52 8.12
400 1.9059× 10−4 3.98 4.21 7.24
800 1.1933× 10−5 3.99 3.83 6.48

7. Conclusions

Starting from two fourth-order multi-derivative extensions of the midpoint and trape-
zoidal formulae, we have derived one-parameter families of standard Runge–Kutta meth-
ods through the approximation of the first and second-order Lie derivatives by means
of suitable finite difference schemes. The resulting formulae retain the order and the
symmetry properties of the original methods while, avoiding the use of Lie derivatives,
their implementation turns out to be simplified. More interestingly, for a specific choice
of the parameter, a symplectic/conjugate-symplectic pair of methods may be detected.
This novel result generalizes to order four the well-known conjugacy relationship between
the midpoint and the trapezoidal methods. Concerning the implementation of the methods,
a block-diagonal version of the simplified Newton scheme has been employed. The it-
eration requires, at each step, a single Jacobian evaluation of the vector field and a LU
factorization of a matrix having the same size of the continuous problem and, interestingly,
may be executed in parallel.
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