14,058 research outputs found

    Zero-Delay Rate Distortion via Filtering for Vector-Valued Gaussian Sources

    Full text link
    We deal with zero-delay source coding of a vector-valued Gauss-Markov source subject to a mean-squared error (MSE) fidelity criterion characterized by the operational zero-delay vector-valued Gaussian rate distortion function (RDF). We address this problem by considering the nonanticipative RDF (NRDF) which is a lower bound to the causal optimal performance theoretically attainable (OPTA) function and operational zero-delay RDF. We recall the realization that corresponds to the optimal "test-channel" of the Gaussian NRDF, when considering a vector Gauss-Markov source subject to a MSE distortion in the finite time horizon. Then, we introduce sufficient conditions to show existence of solution for this problem in the infinite time horizon. For the asymptotic regime, we use the asymptotic characterization of the Gaussian NRDF to provide a new equivalent realization scheme with feedback which is characterized by a resource allocation (reverse-waterfilling) problem across the dimension of the vector source. We leverage the new realization to derive a predictive coding scheme via lattice quantization with subtractive dither and joint memoryless entropy coding. This coding scheme offers an upper bound to the operational zero-delay vector-valued Gaussian RDF. When we use scalar quantization, then for "r" active dimensions of the vector Gauss-Markov source the gap between the obtained lower and theoretical upper bounds is less than or equal to 0.254r + 1 bits/vector. We further show that it is possible when we use vector quantization, and assume infinite dimensional Gauss-Markov sources to make the previous gap to be negligible, i.e., Gaussian NRDF approximates the operational zero-delay Gaussian RDF. We also extend our results to vector-valued Gaussian sources of any finite memory under mild conditions. Our theoretical framework is demonstrated with illustrative numerical experiments.Comment: 32 pages, 9 figures, published in IEEE Journal of Selected Topics in Signal Processin

    Chord Diagrams and Gauss Codes for Graphs

    Get PDF
    Chord diagrams on circles and their intersection graphs (also known as circle graphs) have been intensively studied, and have many applications to the study of knots and knot invariants, among others. However, chord diagrams on more general graphs have not been studied, and are potentially equally valuable in the study of spatial graphs. We will define chord diagrams for planar embeddings of planar graphs and their intersection graphs, and prove some basic results. Then, as an application, we will introduce Gauss codes for immersions of graphs in the plane and give algorithms to determine whether a particular crossing sequence is realizable as the Gauss code of an immersed graph.Comment: 20 pages, many figures. This version has been substantially rewritten, and the results are stronge

    Gauss paragraphs of classical links and a characterization of virtual link groups

    Get PDF
    A classical link in 3-space can be represented by a Gauss paragraph encoding a link diagram in a combinatorial way. A Gauss paragraph may code not a classical link diagram, but a diagram with virtual crossings. We present a criterion and a linear algorithm detecting whether a Gauss paragraph encodes a classical link. We describe Wirtinger presentations realizable by virtual link groups.Comment: 12 pages, 12 figures, v2: new results have been adde

    An Introduction to Virtual Spatial Graph Theory

    Get PDF
    Two natural generalizations of knot theory are the study of spatial graphs and virtual knots. Our goal is to unify these two approaches into the study of virtual spatial graphs. This paper is a survey, and does not contain any new results. We state the definitions, provide some examples, and survey the known results. We hope that this paper will help lead to rapid development of the area.Comment: 9 pages, 7 figures, presented at the International Workshop on Knot Theory for Scientific Objects at Osaka City University, March 200
    • …
    corecore