3,690 research outputs found

    Simplifying proofs of linearisability using layers of abstraction

    Get PDF
    Linearisability has become the standard correctness criterion for concurrent data structures, ensuring that every history of invocations and responses of concurrent operations has a matching sequential history. Existing proofs of linearisability require one to identify so-called linearisation points within the operations under consideration, which are atomic statements whose execution causes the effect of an operation to be felt. However, identification of linearisation points is a non-trivial task, requiring a high degree of expertise. For sophisticated algorithms such as Heller et al's lazy set, it even is possible for an operation to be linearised by the concurrent execution of a statement outside the operation being verified. This paper proposes an alternative method for verifying linearisability that does not require identification of linearisation points. Instead, using an interval-based logic, we show that every behaviour of each concrete operation over any interval is a possible behaviour of a corresponding abstraction that executes with coarse-grained atomicity. This approach is applied to Heller et al's lazy set to show that verification of linearisability is possible without having to consider linearisation points within the program code

    Formal methods and tools for the development of distributed and real time systems : Esprit Project 3096 (SPEC)

    Get PDF
    The Basic Research Action No. 3096, Formal Methods snd Tools for the Development of Distributed and Real Time Systems, is funded in the Area of Computer Science, under the ESPRIT Programme of the European Community. The coordinating institution is the Department of Computing Science, Eindhoven University of Technology, and the participating Institutions are the Institute of Computer Science of Crete. the Swedish Institute of Computer Science, the Programmimg Research Group of the University of Oxford, and the Computer Science Departments of the University of Manchester, Imperial College. Weizmann Institute of Science, Eindhoven University of Technology, IMAG Grenoble. Catholic University of Nijmegen, and the University of Liege. This document contains the synopsis. and part of the sections on objectives and area of advance, on baseline and rationale, on research goals, and on organisation of the action, as contained in the original proposal, submitted June, 198S. The section on the state of the art (18 pages) and the full list of references (21 pages) of the original proposal have been deleted because of limitation of available space

    A CSP-Based Trajectory for Designing Formally Verified Embedded Control Software

    Get PDF
    This paper presents in a nutshell a procedure for producing formally verified concurrent software. The design paradigm provides means for translating block-diagrammed models of systems from various problem domains in a graphical notation for process-oriented architectures. Briefly presented CASE tool allows code generation both for formal analysis of the models of software and code generation in a target implementation language. For formal analysis a highquality commercial formal checker is used
    • …
    corecore