27 research outputs found

    On Unlimited Sampling

    Full text link
    Shannon's sampling theorem provides a link between the continuous and the discrete realms stating that bandlimited signals are uniquely determined by its values on a discrete set. This theorem is realized in practice using so called analog--to--digital converters (ADCs). Unlike Shannon's sampling theorem, the ADCs are limited in dynamic range. Whenever a signal exceeds some preset threshold, the ADC saturates, resulting in aliasing due to clipping. The goal of this paper is to analyze an alternative approach that does not suffer from these problems. Our work is based on recent developments in ADC design, which allow for ADCs that reset rather than to saturate, thus producing modulo samples. An open problem that remains is: Given such modulo samples of a bandlimited function as well as the dynamic range of the ADC, how can the original signal be recovered and what are the sufficient conditions that guarantee perfect recovery? In this paper, we prove such sufficiency conditions and complement them with a stable recovery algorithm. Our results are not limited to certain amplitude ranges, in fact even the same circuit architecture allows for the recovery of arbitrary large amplitudes as long as some estimate of the signal norm is available when recovering. Numerical experiments that corroborate our theory indeed show that it is possible to perfectly recover function that takes values that are orders of magnitude higher than the ADC's threshold.Comment: 11 pages, 4 figures, copy of initial version to appear in Proceedings of 12th International Conference on Sampling Theory and Applications (SampTA

    One-Bit-Aided Modulo Sampling for DOA Estimation

    Full text link
    Modulo sampling or unlimited sampling has recently drawn a great deal of attention for cutting-edge applications, due to overcoming the barrier of information loss through sensor saturation and clipping. This is a significant problem, especially when the range of signal amplitudes is unknown or in the near-far case. To overcome this fundamental bottleneck, we propose a one-bit-aided (1bit-aided) modulo sampling scheme for direction-of-arrival (DOA) estimation. On the one hand, one-bit quantization involving a simple comparator offers the advantages of low-cost and low-complexity implementation. On the other hand, one-bit quantization provides an estimate of the normalized covariance matrix of the unquantized measurements via the arcsin law. The estimate of the normalized covariance matrix is used to implement blind integer-forcing (BIF) decoder to unwrap the modulo samples to construct the covariance matrix, and subspace methods can be used to perform the DOA estimation. Our approach named as 1bit-aided-BIF addresses the near-far problem well and overcomes the intrinsic low dynamic range of one-bit quantization. Numerical experiments validate the excellent performance of the proposed algorithm compared to using a high-precision ADC directly in the given set up

    HDR Imaging With One-Bit Quantization

    Full text link
    Modulo sampling and dithered one-bit quantization frameworks have emerged as promising solutions to overcome the limitations of traditional analog-to-digital converters (ADCs) and sensors. Modulo sampling, with its high-resolution approach utilizing modulo ADCs, offers an unlimited dynamic range, while dithered one-bit quantization offers cost-efficiency and reduced power consumption while operating at elevated sampling rates. Our goal is to explore the synergies between these two techniques, leveraging their unique advantages, and to apply them to non-bandlimited signals within spline spaces. One noteworthy application of these signals lies in High Dynamic Range (HDR) imaging. In this paper, we expand upon the Unlimited One-Bit (UNO) sampling framework, initially conceived for bandlimited signals, to encompass non-bandlimited signals found in the context of HDR imaging. We present a novel algorithm rigorously examined for its ability to recover images from one-bit modulo samples. Additionally, we introduce a sufficient condition specifically designed for UNO sampling to perfectly recover non-bandlimited signals within spline spaces. Our numerical results vividly demonstrate the effectiveness of UNO sampling in the realm of HDR imaging.Comment: arXiv admin note: text overlap with arXiv:2308.0069

    Sampling and Super-resolution of Sparse Signals Beyond the Fourier Domain

    Full text link
    Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super-resolution. In many cases, however, Fourier domain may not be the natural choice. For example, in holography, low-pass projections of sparse signals are obtained in the Fresnel domain. Similarly, time-varying system identification relies on low-pass projections on the space of linear frequency modulated signals. In this paper, we study the recovery of sparse signals from low-pass projections in the Special Affine Fourier Transform domain (SAFT). The SAFT parametrically generalizes a number of well known unitary transformations that are used in signal processing and optics. In analogy to the Shannon's sampling framework, we specify sampling theorems for recovery of sparse signals considering three specific cases: (1) sampling with arbitrary, bandlimited kernels, (2) sampling with smooth, time-limited kernels and, (3) recovery from Gabor transform measurements linked with the SAFT domain. Our work offers a unifying perspective on the sparse sampling problem which is compatible with the Fourier, Fresnel and Fractional Fourier domain based results. In deriving our results, we introduce the SAFT series (analogous to the Fourier series) and the short time SAFT, and study convolution theorems that establish a convolution--multiplication property in the SAFT domain.Comment: 42 pages, 3 figures, manuscript under revie

    Joint transmit and receive beamforming design in full-duplex integrated sensing and communications

    Get PDF
    Integrated sensing and communication (ISAC) has been envisioned as a solution to realize the sensing capability required for emerging applications in wireless networks. For a mono-static ISAC transceiver, as signal transmission durations are typically much longer than the radar echo round-trip times, the radar returns are drowned by the strong residual self interference (SI) from the transmitter, despite adopting sufficient SI cancellation techniques before digital domain - a phenomenon termed the echo-miss problem. A promising approach to tackle this problem involves the ISAC transceiver to be full-duplex (FD), and in this paper we jointly design the transmit and receive beamformers at the transceiver, transmit precoder at the uplink user, and receive combiner at the downlink user to simultaneously (a) maximize the uplink and downlink communication rate, (b) maximize the transmit and receive radar beampattern power at the target, and (c) suppress the residual SI. To solve this optimization problem, we proposed a penalty-based iterative algorithm. Numerical results illustrate that the proposed design can effectively achieve up to 60 dB digital-domain SI cancellation, a higher average sum-rate, and more accurate radar parameter estimation compared with previous ISAC FD studies

    Fourier-Domain Inversion for the Modulo Radon Transform

    Full text link
    Inspired by the multiple-exposure fusion approach in computational photography, recently, several practitioners have explored the idea of high dynamic range (HDR) X-ray imaging and tomography. While establishing promising results, these approaches inherit the limitations of multiple-exposure fusion strategy. To overcome these disadvantages, the modulo Radon transform (MRT) has been proposed. The MRT is based on a co-design of hardware and algorithms. In the hardware step, Radon transform projections are folded using modulo non-linearities. Thereon, recovery is performed by algorithmically inverting the folding, thus enabling a single-shot, HDR approach to tomography. The first steps in this topic established rigorous mathematical treatment to the problem of reconstruction from folded projections. This paper takes a step forward by proposing a new, Fourier domain recovery algorithm that is backed by mathematical guarantees. The advantages include recovery at lower sampling rates while being agnostic to modulo threshold, lower computational complexity and empirical robustness to system noise. Beyond numerical simulations, we use prototype modulo ADC based hardware experiments to validate our claims. In particular, we report image recovery based on hardware measurements up to 10 times larger than the sensor's dynamic range while benefiting with lower quantization noise (∼\sim12 dB).Comment: 12 pages, submitted for possible publicatio

    Time Encoding via Unlimited Sampling: Theory, Algorithms and Hardware Validation

    Full text link
    An alternative to conventional uniform sampling is that of time encoding, which converts continuous-time signals into streams of trigger times. This gives rise to Event-Driven Sampling (EDS) models. The data-driven nature of EDS acquisition is advantageous in terms of power consumption and time resolution and is inspired by the information representation in biological nervous systems. If an analog signal is outside a predefined dynamic range, then EDS generates a low density of trigger times, which in turn leads to recovery distortion due to aliasing. In this paper, inspired by the Unlimited Sensing Framework (USF), we propose a new EDS architecture that incorporates a modulo nonlinearity prior to acquisition that we refer to as the modulo EDS or MEDS. In MEDS, the modulo nonlinearity folds high dynamic range inputs into low dynamic range amplitudes, thus avoiding recovery distortion. In particular, we consider the asynchronous sigma-delta modulator (ASDM), previously used for low power analog-to-digital conversion. This novel MEDS based acquisition is enabled by a recent generalization of the modulo nonlinearity called modulo-hysteresis. We design a mathematically guaranteed recovery algorithm for bandlimited inputs based on a sampling rate criterion and provide reconstruction error bounds. We go beyond numerical experiments and also provide a first hardware validation of our approach, thus bridging the gap between theory and practice, while corroborating the conceptual underpinnings of our work.Comment: 27 pgs, 11 figures, IEEE Trans. Sig. Proc., accepted with minor revision

    Modulation For Modulo: A Sampling-Efficient High-Dynamic Range ADC

    Full text link
    In high-dynamic range (HDR) analog-to-digital converters (ADCs), having many quantization bits minimizes quantization errors but results in high bit rates, limiting their application scope. A strategy combining modulo-folding with a low-DR ADC can create an efficient HDR-ADC with fewer bits. However, this typically demands oversampling, increasing the overall bit rate. An alternative method using phase modulation (PM) achieves HDR-ADC functionality by modulating the phase of a carrier signal with the analog input. This allows a low-DR ADC with fewer bits. We've derived identifiability results enabling reconstruction of the original signal from PM samples acquired at the Nyquist rate, adaptable to various signals and non-uniform sampling. Using discrete phase demodulation algorithms for practical implementation, our PM-based approach doesn't require oversampling in noise-free conditions, contrasting with modulo-based ADCs. With noise, our PM-based HDR method demonstrates efficiency with lower reconstruction errors and reduced sampling rates. Our hardware prototype illustrates reconstructing signals ten times greater than the ADC's DR from Nyquist rate samples, potentially replacing high-bit rate HDR-ADCs while meeting existing bit rate needs.Comment: 12 Pages, 13 Figure
    corecore