905 research outputs found

    Lower Bounds on Query Complexity for Testing Bounded-Degree CSPs

    Full text link
    In this paper, we consider lower bounds on the query complexity for testing CSPs in the bounded-degree model. First, for any ``symmetric'' predicate P:0,1k→0,1P:{0,1}^{k} \to {0,1} except \equ where k≥3k\geq 3, we show that every (randomized) algorithm that distinguishes satisfiable instances of CSP(P) from instances (∣P−1(0)∣/2k−ϵ)(|P^{-1}(0)|/2^k-\epsilon)-far from satisfiability requires Ω(n1/2+δ)\Omega(n^{1/2+\delta}) queries where nn is the number of variables and δ>0\delta>0 is a constant that depends on PP and ϵ\epsilon. This breaks a natural lower bound Ω(n1/2)\Omega(n^{1/2}), which is obtained by the birthday paradox. We also show that every one-sided error tester requires Ω(n)\Omega(n) queries for such PP. These results are hereditary in the sense that the same results hold for any predicate QQ such that P−1(1)⊆Q−1(1)P^{-1}(1) \subseteq Q^{-1}(1). For EQU, we give a one-sided error tester whose query complexity is O~(n1/2)\tilde{O}(n^{1/2}). Also, for 2-XOR (or, equivalently E2LIN2), we show an Ω(n1/2+δ)\Omega(n^{1/2+\delta}) lower bound for distinguishing instances between ϵ\epsilon-close to and (1/2−ϵ)(1/2-\epsilon)-far from satisfiability. Next, for the general k-CSP over the binary domain, we show that every algorithm that distinguishes satisfiable instances from instances (1−2k/2k−ϵ)(1-2k/2^k-\epsilon)-far from satisfiability requires Ω(n)\Omega(n) queries. The matching NP-hardness is not known, even assuming the Unique Games Conjecture or the dd-to-11 Conjecture. As a corollary, for Maximum Independent Set on graphs with nn vertices and a degree bound dd, we show that every approximation algorithm within a factor d/\poly\log d and an additive error of ϵn\epsilon n requires Ω(n)\Omega(n) queries. Previously, only super-constant lower bounds were known
    • …
    corecore