14 research outputs found

    A New Tool for Rectangular Dualization

    Get PDF
    OcORD is a software tool for rectangular dualization. Rectangular dualization is a dual representation of a plane graph introduced in the early seventies. It proved to be effective in applications such as architectural space planning and VLSI floorplanning. However, not all plane graphs admit a rectangular dual, which imposes severe limitations on its use in other applications. OcORD aims at freeing rectangular dualization from such restrictions and proving its effectiveness in graph visualization. This is achieved in two ways. Firstly, OcORD features a new linear-time algorithm creating a rectangular dual of any plane graph. Secondly, it shows how nice drawings of a graph can be easily obtained from its rectangular dual. Finally, the automatic generation of a Virtual World through rectangular dualization is described. [DOI: 10.1685/CSC09301] About DO

    Flip Distance Between Two Triangulations of a Point-Set is NP-complete

    Full text link
    Given two triangulations of a convex polygon, computing the minimum number of flips required to transform one to the other is a long-standing open problem. It is not known whether the problem is in P or NP-complete. We prove that two natural generalizations of the problem are NP-complete, namely computing the minimum number of flips between two triangulations of (1) a polygon with holes; (2) a set of points in the plane

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    How to compare arc-annotated sequences: The alignment hierarchy

    No full text
    International audienceWe describe a new unifying framework to express comparison of arc-annotated sequences, which we call alignment of arc-annotated sequences. We first prove that this framework encompasses main existing models, which allows us to deduce complexity results for several cases from the literature. We also show that this framework gives rise to new relevant problems that have not been studied yet. We provide a thorough analysis of these novel cases by proposing two polynomial time algorithms and an NP-completeness proof. This leads to an almost exhaustive study of alignment of arc-annotated sequences

    Transversal structures on triangulations: a combinatorial study and straight-line drawings

    Get PDF
    This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, which are called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edge-labelling and consists of two bipolar orientations that are transversal. For this reason, the terminology used here is that of transversal structures. The main results obtained in the article are a bijection between irreducible triangulations and ternary trees, and a straight-line drawing algorithm for irreducible triangulations. For a random irreducible triangulation with nn vertices, the grid size of the drawing is asymptotically with high probability 11n/27×11n/2711n/27\times 11n/27 up to an additive error of \cO(\sqrt{n}). In contrast, the best previously known algorithm for these triangulations only guarantees a grid size (n/21)×n/2(\lceil n/2\rceil -1)\times \lfloor n/2\rfloor.Comment: 42 pages, the second version is shorter, focusing on the bijection (with application to counting) and on the graph drawing algorithm. The title has been slightly change
    corecore