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Abstract

OcORD is a software tool for rectangular dualization. Rectangular dualization is a

dual representation of a plane graph introduced in the early seventies. It proved to be

effective in applications such as architectural space planning and VLSI floorplanning.

However, not all plane graphs admit a rectangular dual, which imposes severe limitations

on its use in other applications. OcORD aims at freeing rectangular dualization from

such restrictions and proving its effectiveness in graph visualization. This is achieved in

two ways. Firstly, OcORD features a new linear-time algorithm creating a rectangular

dual of any plane graph. Secondly, it shows how nice drawings of a graph can be easily

obtained from its rectangular dual. Finally, the automatic generation of a Virtual World

through rectangular dualization is described.

Keywords: Rectangular Dualization, Orthogonal Graph Drawing, Bus-Mode

Drawing, Clustered Graphs, Electronic Institutions.

1. Introduction

A rectangular dual (RD) of a plane graph G is a dissection of a rectan-
gle into as many non-overlapping subrectangles as the number of vertices
of G, such that any two subrectangles are adjacent if and only if the corre-
sponding vertices are adjacent in G. Its history dates back 40 years, when
Grason described an automated approach to the space planning problem in
architecture [9].

The most popular application of RD is VLSI floorplanning. The advent
of the integrated circuits revolutionized the hardware industry more than
any other technology. However, the design of a VLSI circuit becomes ex-
tremely challenging as its size increases. Special software, known as CAD
(Computer-Aided Design), automate most of the design task and let users
concentrate on high-level details. Usually, the design of a VLSI circuit is
subdivided into different abstraction levels. In particular, at the floorplan-
ning stage, the circuit is seen as a collection of interconnected rectangular

Licensed under the Creative Commons Attribution Noncommercial No Derivatives

Received 15/02/2009, in final form 19/06/2009

Published 31/07/2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Università degli Studi di Messina: Open Journals Messina

https://core.ac.uk/display/270294209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


M. Ancona et al

blocks (or macro-cells), which have to be placed on a chip in such a way
that some objective functions (area, latency, wire length) are minimized (or
maximized). The interconnection between macro-cells is described with an
adjacency graph; a rectangular dual of this graph is exactly a floorplan of
the circuit.

Lots of papers have been written on RD [9,11–13]. Despite of this, RD
is still limited by the lack of efficient algorithms. In particular, at least in
our knowledge, there is no algorithm which creates a rectangular dual of
any plane graph in linear time. In this paper, we present our advances in
RD, while describing the main features of OcORD, our software tool for
rectangular dualization.

2. Preliminaries

This section introduces the key concepts used in this paper. The reader
is referred to [8] for a quick introduction to graph theory.

A rectangular dual R(G) of a plane graph G is a pair (Γ, f) such that:

• Γ = {R1, R2, ..., Rn} is a set of simple non-overlapping rectangles,
which form a partition of a rectangle R (called enclosure rectangle);

• f : V (G) → Γ associates each vertex of G to a rectangle in Γ. f is
a bijective function;

• Two vertices u and v are adjacent in G if and only if f(u) and f(v)
are adjacent in R(G).

(a)

(b)

Fig. 1. (a) A plane graph G. (b) A rectangular dual of G.
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Not every plane graph has a rectangular dual. Necessary and sufficient
admissibility conditions for rectangular dualization were proved indepen-
dently by Lai-Leinwand [13] and Kozminski-Kinnen [12].

Theorem 2.1 (Lai-Leinwand, 1984). A graph G admits a rectangular
dual if and only if: (a) G is plane, (b) each inner face of G is bounded
by a cycle of length 3 (hence, 3−cycle) and (c) G contains no separating
triangles.

A separating triangle is a 3−cycle which is the boundary of no face.
A graph complying with the conditions stated by Theorem 2.1 is called
rectangular graph.

3. OcORD Outlook

With respect to the previous version [2], OcORD was enriched with
several interesting features. Firstly, a graph editor, which makes easier the
creation of new graphs, has been developed (Sect. 4). At the current stage,
the editor only features basic drawing tools and can not compete with
already available tools, such as GraphViz. Secondly, OcORD uses a propri-
etary XML language to encode the graphs created with the editor (Sect. 5).
Third, a full linear-time algorithm for rectangular dualization has been im-
plemented (Sect. 6). Fourth, OcORD provides an effective tool for drawing
a graph, given its rectangular dual (Sect. 7). Finally, it creates the basis for
the visualization of Virtual Worlds based on the 3D Electronic Institution
metaphor (Sect. 8).

4. The Graph Editor

The OcORD editor is composed of a drawing area and a toolbar provid-
ing basic facilities for drawing graphs. The editor provides for two working
modes. The drawing mode allows nodes and edges to be drawn; in the se-
lection mode, the appearance of nodes and edges can be modified as well
as their position and shape. Edges are drawn as Bezier curves, which are
widely used in computer graphics, as they appear reasonably smooth at all
scales, as opposed to polygonal lines. At a first glance, the use of curvilinear
edges may appear a kind of unneeded whim; after all, planar graphs admit
a straight-line plane embedding. However, a straight-line drawing requires
the nodes to be appropriately placed in the drawing area, in order to pre-
vent edge crossings. Typically, one realizes that the position of a node is
wrong only when two edges cross. Thus, if curvilinear edges were not al-
lowed, edge crossings could be eliminated only by moving (potentially all)
vertices.
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(a) (b)

Fig. 2. (a) u precedes w in clockwise order around v and is on the left of the straight line
directed from v to w. The same does not hold for z and x. (b) Edge (v, z) is approximated
with a straight line (v, z′).

4.1. How Does OcORD Conceive a Drawing?

Once OcORD has been given a drawing of a graph, a procedure is
needed to “translate” the drawing into a set of adjacency lists. Each ver-
tex v, indeed, is associated with an adjacency list Adj(v), containing the
neighbours of v sorted in clockwise order around v. In Fig. 2 (a) u precedes
w in clockwise direction around v; this means that u in on the left of the
straight line directed from v to w. This invariant does not hold for x and
z; in fact, z precedes x, but lays on the right of the line (v, x). To fix this
situation, the curvilinear edge (v, z) is approximated with a straight edge
(v, z′) (Fig. 2 (b)). Thus, Adj(v) is obtained by radially sorting around v
its neighbours; using Merge Sort, the creation of all adjacency lists takes
O(|N(v)| log |N(v)|) time, where N(v) denotes the set of the neighbours of
v.

5. Input Format

Lots of words have been spent to (rightly) praise XML and its virtues.
Jon Bosak, who led the creation of XML, claimed that “XML is the digital
dial tone of the Web”; Peter Murray Rust (Unilever Centre for Molecular
Sciences Informatics) added: “I assume that there are now (or soon will
be) chips that are XML-aware. I love it.”. These two colourful quotations
define XML better than thousands words. Born to satisfy the demands for
a more flexible mark-up language to complement HTML, it is now widely
used in a number of different applications.

No standard XML language for graphs has been defined yet. Neverthe-
less, literature counts some remarkable works, including, in particular, GXL
and GraphML [5,15]. Due to the lack of standards, we opted for creating a
simple language, tailored on OcORD requirements. A graph in OcORD is
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a collection of clusters; each is described using the XML element <graph>.
Elements <node> and <edge> are used to describe nodes and edges re-
spectively through a large set of attributes. Finally, element <intercluster>
allows the definition of the edges whose endpoints belong to different clus-
ters.

6. Basic Algorithm

The core of OcORD is an algorithm which creates a rectangular dual of
any plane graph, after enforcing the conditions stated in Theorem 2.1. This
algorithm improves the one described in [2] to run in linear-time. Given a
plane graph G, the following steps are executed:

1. Biconnectivity Test and Augmentation. If G is not biconnected,
then some edges are added to make it biconnected.

2. 4−completion. Four vertices North, West, South and East are added
to form a new exterior cycle of G. Edges are added to keep G biconnected.

3. Separating triangle search and break. Any separating triangle of G
is eliminated (“broken”, to follow the notation used in [13]).

4. Triangulation. The inner faces of G are triangulated in linear time [3].
After this step, G is a rectangular graph.

5. Rectangular dualization. A rectangular dual of G is created, using
the linear-time algorithm described in [11]. This algorithm requires G to
have an exterior 4−cycle. This explains the 4−completion (Step 2).

(a) (b)

Fig. 3. (a) A plane graph G with one separating triangle ∆ = (a, b, c). (b) The rectan-
gular dual of G. C1 is a gate, corresponding to the crossover vertex added on edge (a, c)
to break ∆. Rectangles a and c are adjacent through C1. Rectangles a and d are adjacent,
although their corresponding vertices are not.

The output of the algorithm R(G) = (Γ, f) is not properly the rectan-
gular dual of G (Fig. 3). In fact, some rectangles may turn out to be ad-
jacent, though the corresponding vertices are not. However, if two vertices
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are adjacent in G, the corresponding rectangles are adjacent too, provided
that G has no separating triangles. Indeed, breaking a separating triangle
∆ = (u, v, w) is accomplished by removing one of its edges (say (u, v)),
adding a new vertex c (called crossover vertex ) and linking c to u and v.
Thus, because of the crossover vertex, u and v are not adjacent anymore.
Consequently, in R(G) the rectangles f(u) and f(v) will be adjacent only
through rectangle f(c) (called gate).

6.1. Biconnectivity Augmentation

Augmenting G to a biconnected graph with a minimum number of edges
is a well-known NP-hard problem [10]. However, although our aim is to
modify G as little as possible, minimizing the number of additional edges
is not our primary concern. Any new edge,in fact, does not affect the area
of the rectangular dual. For this reason, we chose the simple algorithm
described in [14], with the improvements proposed in [10]. The idea is trivial:
if u and w are consecutive in N(v) and belong to different biconnected
components, then edge (u,w) is added. This procedure is applied to all
consecutive neighbours of all vertices of G. Kant remarked that in the worst
case the degree of a single vertex may receive O(n) new incident edges.
Thus, he proposed to change the embedding of G, so that all neighbours of
v, belonging to the same biconnected component, are consecutive in N(v).
In this way, the algorithm still runs in linear time and each vertex receives
at most 2 extra edges.

6.2. Finding Separating Triangles

A separating triangle is a 3−cycle which is not a face. In [6] a simple
nice linear-time algorithm for finding all 3−cycles is described. The nodes
of G are sorted by decreasing degree, which can be accomplished using
Bucket Sort, a well-known linear-time sorting algorithm. For each node
v the following operations are performed: first, the neighbours of v are
marked, then, for each marked node w, if w is adjacent to a marked node
u, then (v, w, u) is a 3−cycle. After visiting all its neighbours, v is removed
from G, so that any separating triangle is found only once.

Each vertex of G can be assigned a natural number; consequently, we
can assume that each triple (v, w, u) in L is such that v < w < u. These
triples can be lexicographically sorted using Radix Sort, another linear-time
sorting algorithm. Finally, a list F of 3−faces is created and lexicograph-
ically sorted in the same way. We remark that finding all faces of a plane
graph can be trivially accomplished in linear time. Since L and F are sorted,
they can be searched in parallel to remove from L any item of F .
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6.3. Breaking Separating Triangles

Minimizing the crossover vertices is important, as they increase the area
of the rectangular dual of G. The first version of OcORD implemented a
O(n3) time algorithm [1]. However, since we use rectangular dualization also
to create graph drawings and most of the drawing algorithms are linear-
time, including this algorithm in OcORD is not the best choice.

Fig. 4. A graph with two islands (highlighted with two colours)

We observe that separating triangles do not occur frequently in plane
graphs. It was estimated in [16] that in randomly generated plane inner
triangulated graphs (PTG)a, the expected number of separating triangles
is approximately 16% of the number of nodes. We confirmed this figure
using a simple random graph generator included in OcORD. Since PTGs
are the most dense planar graphs, we can conclude that the number of
separating triangles in a planar graph is at most 16% of the number of
nodes. Moreover, if all separating triangles of G are independent (no two of
them share an edge), the solution to the problem is trivial, as a crossover
vertex for each triangle must be added. Thus, the complexity of the problem
does not strictly depend on the overall number of separating triangles, but
on the size of the biggest island. An island (of separating triangles) is a
maximal group of triangles which are pairwise adjacent (Fig. 4). Using the
OcORD graph generator, we created 10000 PTGs, with order ranging from
100 to 1000 nodes, and verified that the island size is on average 2 and
in the worst case is 21. Due to all these properties, we decided to tackle
the problem implementing a set of linear-time heuristic algorithms. We are
currently evaluating their performances on randomly generated graphs.

aA PTG is a graph whose inner faces are bounded by 3−cycles
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7. Drawing Graphs with Rectangular Dualization

Graph Drawing has emerged as an important part of graph theory since
the 80s. A number of different applications, ranging from circuit design
to software engineering, take advantage from graph visualization. Graph
Drawing aims at developing efficient algorithms for creating “nice” drawings
of a graph. “Nice” refers, but is not limited to, aesthetic; a drawing pleasant
to see, in fact, improves the understanding of the information that the graph
wants to express.

In our knowledge, rectangular dualization has never been considered
as a graph drawing tool. This is partly due to the lack of efficient (linear
time) algorithms as well as to the admissibility conditions, which restrict
the scope of rectangular dualization to a small class of graphs. In OcORD,
rectangular dualization is used to create orthogonal drawings and bus-mode
drawings of plane graphs.

Fig. 5. An orthogonal drawing of a graph. The rectangle having no vertex inside is a
gate through which vertices a and g are adjacent.

In an orthogonal drawing, each edge is drawn as a chain of horizontal
and vertical segments (Fig. 5). This drawing style is particularly attractive,
as it maximizes the angular resolution, that is the maximum angle between
two adjacent edges. On the other hand, it can be used only with graphs
with maximum degree 4. OcORD creates an orthogonal drawing computing
an orthogonal transform for each rectangle in the rectangular dual. An
orthogonal transform of a rectangle R is a pair TR = (p, H ); p is a point
enclosed in R representing the node v of G corresponding to R; H is a set
of as many polygonal chains as the adjacencies of R. The endpoints of each
polygonal chain in H are p and one point on the portion of edge (called
window) R shares with an adjacent rectangle (Fig. 5).

A bus-mode drawing extends the orthogonal drawing to graphs with
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Fig. 6. An bus-mode drawing of a graph.

arbitrarily high degree [2]. The effectiveness of an orthogonal drawing rely
on the fact that the angular resolution is π

2 , which makes it readable and
pleasant to see. A bus-mode drawing maintain this angular resolution by
grouping the edges incident with a vertex into up to 4 bundles (Fig. 6).
Since each bundle may contain several edges, it may not be clear whether
two nodes are adjacent or not. To eliminate the ambiguity, the bundles
are provided with curved corners which indicate the path of each edge.
Each bundle is like a bus which conveys a group of wires between two
electronic devices; hence, the name of this drawing style. To create a bus-
mode representation from R(G), OcORD places a node v at the center of
each rectangle f(v). If two points have the same x− or y−coordinate up to
a predefined constant ε > 0, the position of one is modified so that they can
be joined with a straight edge. For each point pv, inside rectangle f(v), at
most four bundles, leaving pv and running parallel to the x− and y−axis,
are created, based on the following rules:

• An upward bundle, if and only if at least one neighbour of f(v) is above
f(v).

• A leftward bundle, if and only if at least one neighbour of f(v) is to the
left of f(v).

• A downward bundle, if and only if at least one neighbour of f(v) is below
f(v).

• A rightward bundle, if and only if at least one neighbour of f(v) is to
the right of f(v).

As said before, each bundle is terminated by at most two curved corners,
which indicate the direction that the bundle follows when leaving f(v). If
the rectangles f(u), such that u ∈ N(v), can be reached following only
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one direction, the bundle has only one curved corner. After leaving f(v), a
bundle runs along the sides of the rectangles and enters a rectangle (through
a curved corner) only to reach an endpoint.

8. Visualization of Electronic Institutions

3D Electronic Institutions are a new method of software design of open
systems based on the metaphor of 3D Virtual Worlds [7]. One of the draw-
backs of the Virtual Worlds technology is that its design and development
has emerged as a phenomenon shaped by a home computer user, rather
than by the research and development in universities or companies. Thus,
Virtual Words do not have the means to enforce technological norms and
rules of their inhabitants. The enforcement of organizational conventions in
3D Electronic Institutions methodology is achieved by separating different
patterns of conversational activities into separate methodological entities
(scenes), assigning different roles to different types of participants, spec-
ifying the rules (protocols) for inter-participant interactions and defining
the role flow of participants between different scenes. The specification of
scenes and the role flow are done in a form of a directed graph, where nodes
represent scenes and arcs and their labels define the role flow. This graph,
called Performative Structure, forms a basis for the visualization of the sys-
tem. The institution, in fact, is visualized as a 3D virtual building and the
rectangular dual of the Performative Structure is the floorplan of it.

Fig. 7. Floorplan of an Electronic Institution. Any two adjacent rooms are linked
through doors.

An Electronic Institution is specified using a software called ISLANDER
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[7]. The output of ISLANDER is an XML file, which defines the roles al-
lowed within the institution, the language that agents use to interact and
the performative structure, that is the graph representing the institution.
OcORD obtains from this file the embedding of the Performative Structure
and imports it into its graph editor. Such an embedding may not be plane.
Generally, a Performative Structure may even not be planar. Thus, OcORD
first checks whether the given embedding is plane; if it is, the drawing is im-
mediately displayed. If some edges cross, the Boyer-Myrvold algorithm [4]
is used to determine whether the graph is planar and, if so, to compute a
plane embedding. Finally, a drawing of the new embedding is created using
rectangular dualization. Fig. 7 shows a floorplan of an Electronic Institu-
tion.

9. Conclusions and Future Work

In this paper, we shortly described our advances in rectangular dual-
ization. With respect to the previous versions, OcORD has been enriched
with interesting features. The algorithm for rectangular dualization is al-
most complete; we are currently evaluating a set of heuristics for breaking
separating triangles in linear time. Moreover, we are investigating other al-
gorithms for drawing graphs from their rectangular dual. In particular, we
will extend rectangular dualization to hierarchically clustered graphs.
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