10,638 research outputs found

    A QPTAS for Maximum Weight Independent Set of Polygons with Polylogarithmically Many Vertices

    Full text link
    The Maximum Weight Independent Set of Polygons problem is a fundamental problem in computational geometry. Given a set of weighted polygons in the 2-dimensional plane, the goal is to find a set of pairwise non-overlapping polygons with maximum total weight. Due to its wide range of applications, the MWISP problem and its special cases have been extensively studied both in the approximation algorithms and the computational geometry community. Despite a lot of research, its general case is not well-understood. Currently the best known polynomial time algorithm achieves an approximation ratio of n^(epsilon) [Fox and Pach, SODA 2011], and it is not even clear whether the problem is APX-hard. We present a (1+epsilon)-approximation algorithm, assuming that each polygon in the input has at most a polylogarithmic number of vertices. Our algorithm has quasi-polynomial running time. We use a recently introduced framework for approximating maximum weight independent set in geometric intersection graphs. The framework has been used to construct a QPTAS in the much simpler case of axis-parallel rectangles. We extend it in two ways, to adapt it to our much more general setting. First, we show that its technical core can be reduced to the case when all input polygons are triangles. Secondly, we replace its key technical ingredient which is a method to partition the plane using only few edges such that the objects stemming from the optimal solution are evenly distributed among the resulting faces and each object is intersected only a few times. Our new procedure for this task is not more complex than the original one, and it can handle the arising difficulties due to the arbitrary angles of the polygons. Note that already this obstacle makes the known analysis for the above framework fail. Also, in general it is not well understood how to handle this difficulty by efficient approximation algorithms

    Local Guarantees in Graph Cuts and Clustering

    Full text link
    Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min sts-t Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled ++ or - and the goal is to produce a clustering that agrees with the labels as much as possible: ++ edges within clusters and - edges across clusters. The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective. We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective. This naturally gives rise to a family of basic min-max graph cut problems. A prototypical representative is Min Max sts-t Cut: find an sts-t cut minimizing the largest number of cut edges incident on any node. We present the following results: (1)(1) an O(n)O(\sqrt{n})-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems), (2)(2) a remarkably simple 77-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of 4848), and (3)(3) a 1/(2+ε)1/(2+\varepsilon)-approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the 1/(4+ε)1/(4+\varepsilon)-approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi
    corecore