2,888 research outputs found

    Parallel discrete event simulation: A shared memory approach

    Get PDF
    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models

    Dynamic Race Prediction in Linear Time

    Full text link
    Writing reliable concurrent software remains a huge challenge for today's programmers. Programmers rarely reason about their code by explicitly considering different possible inter-leavings of its execution. We consider the problem of detecting data races from individual executions in a sound manner. The classical approach to solving this problem has been to use Lamport's happens-before (HB) relation. Until now HB remains the only approach that runs in linear time. Previous efforts in improving over HB such as causally-precedes (CP) and maximal causal models fall short due to the fact that they are not implementable efficiently and hence have to compromise on their race detecting ability by limiting their techniques to bounded sized fragments of the execution. We present a new relation weak-causally-precedes (WCP) that is provably better than CP in terms of being able to detect more races, while still remaining sound. Moreover it admits a linear time algorithm which works on the entire execution without having to fragment it.Comment: 22 pages, 8 figures, 1 algorithm, 1 tabl
    • …
    corecore