7 research outputs found

    On Tight Security Proofs for Schnorr Signatures

    Get PDF
    The Schnorr signature scheme is the most efficient signature scheme based on the discrete logarithm problem and a long line of research investigates the existence of a tight security reduction for this scheme in the random oracle model. Almost all recent works present lower tightness bounds and most recently Seurin (Eurocrypt 2012) showed that under certain assumptions the non-tight security proof for Schnorr signatures in the random oracle by Pointcheval and Stern (Eurocrypt 1996) is essentially optimal. All previous works in this direction rule out tight reductions from the (one-more) discrete logarithm problem. In this paper we introduce a new meta-reduction technique, which shows lower bounds for the large and very natural class of generic reductions. A generic reduction is independent of a particular representation of group elements. Most reductions in state-of-the-art security proofs have this property. It is desirable, because then the reduction applies generically to any concrete instantiation of the group. Our approach shows unconditionally that there is no tight generic reduction from any natural non-interactive computational problem Π\Pi defined over algebraic groups to breaking Schnorr signatures, unless solving Π\Pi is easy. In an additional application of the new meta-reduction technique, we also unconditionally rule out any (even non-tight) generic reduction from natural non-interactive computational problems defined over algebraic groups to breaking Schnorr signatures in the non-programmable random oracle model

    LiS: Lightweight Signature Schemes for continuous message authentication in cyber-physical systems

    Get PDF
    Agency for Science, Technology and Research (A*STAR) RIE 202

    Impossibility on the Schnorr Signature from the One-more DL Assumption in the Non-programmable Random Oracle Model

    Get PDF
    In the random oracle model (ROM), it is provable from the DL assumption, whereas there is negative circumstantial evidence in the standard model. Fleischhacker, Jager, and Schröder showed that the tight security of the Schnorr signature is unprovable from a strong cryptographic assumption, such as the One-More DL (OM-DL) assumption and the computational and decisional Diffie-Hellman assumption, in the ROM via a generic reduction as long as the underlying cryptographic assumption holds. However, it remains open whether or not the impossibility of the provable security of the Schnorr signature from a strong assumption via a non-tight and reasonable reduction. In this paper, we show that the security of the Schnorr signature is unprovable from the OM-DL assumption in the non-programmable ROM as long as the OM-DL assumption holds. Our impossibility result is proven via a non-tight Turing reduction

    Signed (Group) Diffie-Hellman Key Exchange with Tight Security

    Get PDF
    We propose the first tight security proof for the ordinary two-message signed Diffie-Hellman key exchange protocol in the random oracle model. Our proof is based on the strong computational Diffie-Hellman assumption and the multi-user security of a digital signature scheme. With our security proof, the signed DH protocol can be deployed with optimal parameters, independent of the number of users or sessions, without the need to compensate any security loss. We abstract our approach with a new notion called verifiable key exchange. In contrast to a known tight three-message variant of the signed Diffie-Hellman protocol (Gjøsteen and Jager, CRYPTO 2018), we do not require any modification to the original protocol, and our tightness result is proven in the ``Single-Bit-Guess\u27\u27 model which we know can be tightly composed with symmetric cryptographic primitives to establish a secure channel. Finally, we extend our approach to the group setting and construct the first tightly secure group authenticated key exchange protocol

    Spartan and Bulletproofs are simulation-extractable (for free!)

    Get PDF
    Increasing deployment of advanced zero-knowledge proof systems, especially zkSNARKs, has raised critical questions about their security against real-world attacks. Two classes of attacks of concern in practice are adaptive soundness attacks, where an attacker can prove false statements by choosing its public input after generating a proof, and malleability attacks, where an attacker can use a valid proof to create another valid proof it could not have created itself. Prior work has shown that simulation-extractability (SIM-EXT), a strong notion of security for proof systems, rules out these attacks. In this paper, we prove that two transparent, discrete-log-based zkSNARKs, Spartan and Bulletproofs, are simulation-extractable (SIM-EXT) in the random oracle model if the discrete logarithm assumption holds in the underlying group. Since these assumptions are required to prove standard security properties for Spartan and Bulletproofs, our results show that SIM-EXT is, surprisingly, for free with these schemes. Our result is the first SIM-EXT proof for Spartan and encompasses both linear- and sublinear-verifier variants. Our result for Bulletproofs encompasses both the aggregate range proof and arithmetic circuit variants, and is the first to not rely on the algebraic group model (AGM), resolving an open question posed by Ganesh et al. (EUROCRYPT \u2722). As part of our analysis, we develop a generalization of the tree-builder extraction theorem of Attema et al. (TCC \u2722), which may be of independent interest

    Improvements and New Constructions of Digital Signatures

    Get PDF
    Ein digitales Signaturverfahren, oft auch nur digitale Signatur genannt, ist ein wichtiger und nicht mehr wegzudenkender Baustein in der Kryptographie. Es stellt das digitale Äquivalent zur klassischen handschriftlichen Signatur dar und liefert darüber hinaus noch weitere wünschenswerte Eigenschaften. Mit solch einem Verfahren kann man einen öffentlichen und einen geheimen Schlüssel erzeugen. Der geheime Schlüssel dient zur Erstellung von Signaturen zu beliebigen Nachrichten. Diese können mit Hilfe des öffentlichen Schlüssels von jedem überprüft und somit verifiziert werden. Desweiteren fordert man, dass das Verfahren "sicher" sein soll. Dazu gibt es in der Literatur viele verschiedene Begriffe und Definitionen, je nachdem welche konkreten Vorstellungen beziehungsweise Anwendungsgebiete man hat. Vereinfacht gesagt, sollte es für einen Angreifer ohne Kenntnis des geheimen Schlüssels nicht möglich sein eine gültige Signatur zu einer beliebigen Nachricht zu fälschen. Ein sicheres Signaturverfahren kann somit verwendet werden um die folgenden Ziele zu realisieren: - Authentizität: Jeder Empfänger kann überprüfen, ob die Nachricht von einem bestimmten Absender kommt. - Integrität der Nachricht: Jeder Empfänger kann feststellen, ob die Nachricht bei der Übertragung verändert wurde. - Nicht-Abstreitbarkeit: Der Absender kann nicht abstreiten die Signatur erstellt zu haben. Damit ist der Einsatz von digitalen Signaturen für viele Anwendungen in der Praxis sehr wichtig. Überall da, wo es wichtig ist die Authentizität und Integrität einer Nachricht sicherzustellen, wie beim elektronischen Zahlungsverkehr, Softwareupdates oder digitalen Zertifikaten im Internet, kommen digitale Signaturen zum Einsatz. Aber auch für die kryptographische Theorie sind digitale Signaturen ein unverzichtbares Hilfsmittel. Sie ermöglichen zum Beispiel die Konstruktion von stark sicheren Verschlüsselungsverfahren. Eigener Beitrag: Wie bereits erwähnt gibt es unterschiedliche Sicherheitsbegriffe im Rahmen von digitalen Signaturen. Ein Standardbegriff von Sicherheit, der eine recht starke Form von Sicherheit beschreibt, wird in dieser Arbeit näher betrachtet. Die Konstruktion von Verfahren, die diese Form der Sicherheit erfüllen, ist ein vielschichtiges Forschungsthema. Dazu existieren unterschiedliche Strategien in unterschiedlichen Modellen. In dieser Arbeit konzentrieren wir uns daher auf folgende Punkte. - Ausgehend von vergleichsweise realistischen Annahmen konstruieren wir ein stark sicheres Signaturverfahren im sogenannten Standardmodell, welches das realistischste Modell für Sicherheitsbeweise darstellt. Unser Verfahren ist das bis dahin effizienteste Verfahren in seiner Kategorie. Es erstellt sehr kurze Signaturen und verwendet kurze Schlüssel, beides unverzichtbar für die Praxis. - Wir verbessern die Qualität eines Sicherheitsbeweises von einem verwandten Baustein, der identitätsbasierten Verschlüsselung. Dies hat unter anderem Auswirkung auf dessen Effizienz bezüglich der empfohlenen Schlüssellängen für den sicheren Einsatz in der Praxis. Da jedes identitätsbasierte Verschlüsselungsverfahren generisch in ein digitales Signaturverfahren umgewandelt werden kann ist dies auch im Kontext digitaler Signaturen interessant. - Wir betrachten Varianten von digitalen Signaturen mit zusätzlichen Eigenschaften, sogenannte aggregierbare Signaturverfahren. Diese ermöglichen es mehrere Signaturen effizient zu einer zusammenzufassen und dabei trotzdem alle zugehörigen verschiedenen Nachrichten zu verifizieren. Wir geben eine neue Konstruktion von solch einem aggregierbaren Signaturverfahren an, bei der das Verfahren eine Liste aller korrekt signierten Nachrichten in einer aggregierten Signatur ausgibt anstatt, wie bisher üblich, nur gültig oder ungültig. Wenn eine aggregierte Signatur aus vielen Einzelsignaturen besteht wird somit das erneute Berechnen und eventuell erneute Senden hinfällig und dadurch der Aufwand erheblich reduziert
    corecore