968 research outputs found

    Hierarchical bases for non-hierarchic 3Dtriangular meshes

    Get PDF
    We describe a novel basis of hierarchical, multiscale functions that are linear combinations of standard Rao-Wilton- Glisson (RWG) functions. When the basis is used for discretizing the electric field integral equation (EFIE) for PEC objects it gives rise to a linear system immune from low-frequency breakdown, and well conditioned for dense meshes. The proposed scheme can be applied to any mesh with triangular facets, and therefore it can be used as if it were an algebraic preconditioner. The properties of the new system are confirmed by numerical results that show fast convergence rates of iterative solvers, significantly better than those for the loop-tree basis. As a byproduct of the basis generation, a generalization of the RWG functions to nonsimplex cells is introduced

    Lazy Abstraction-Based Controller Synthesis

    Full text link
    We present lazy abstraction-based controller synthesis (ABCS) for continuous-time nonlinear dynamical systems against reach-avoid and safety specifications. State-of-the-art multi-layered ABCS pre-computes multiple finite-state abstractions of varying granularity and applies reactive synthesis to the coarsest abstraction whenever feasible, but adaptively considers finer abstractions when necessary. Lazy ABCS improves this technique by constructing abstractions on demand. Our insight is that the abstract transition relation only needs to be locally computed for a small set of frontier states at the precision currently required by the synthesis algorithm. We show that lazy ABCS can significantly outperform previous multi-layered ABCS algorithms: on standard benchmarks, lazy ABCS is more than 4 times faster

    Logic, Rational Agency, and Intelligent Interaction

    Get PDF
    ... make a plea for recasting logic as a theory of interactive agency, and show how this perspective fits both old achievements and new broader ambitions for the field

    Poisson Multi-Bernoulli Mixtures for Multiple Object Tracking

    Get PDF
    Multi-object tracking (MOT) refers to the process of estimating object trajectories of interest based on sequences of noisy sensor measurements obtained from multiple sources. Nowadays, MOT has found applications in numerous areas, including, e.g., air traffic control, maritime navigation, remote sensing, intelligent video surveillance, and more recently environmental perception, which is a key enabling technology in automated vehicles. This thesis studies Poisson multi-Bernoulli mixture (PMBM) conjugate priors for MOT. Finite Set Statistics provides an elegant Bayesian formulation of MOT based on random finite sets (RFSs), and a significant trend in RFSs-based MOT is the development of conjugate distributions in Bayesian probability theory, such as the PMBM distributions. Multi-object conjugate priors are of great interest as they provide families of distributions that are suitable to work with when seeking accurate approximations to the true posterior distributions. Many RFS-based MOT approaches are only concerned with multi-object filtering without attempting to estimate object trajectories. An appealing approach to building trajectories is by computing the multi-object densities on sets of trajectories. This leads to the development of many multi-object filters based on sets of trajectories, e.g., the trajectory PMBM filters. In this thesis, [Paper A] and [Paper B] consider the problem of point object tracking where an object generates at most one measurement per time scan. In [Paper A], a multi-scan implementation of trajectory PMBM filters via dual decomposition is presented. In [Paper B], a multi-trajectory particle smoother using backward simulation is presented for computing the multi-object posterior for sets of trajectories using a sequence of multi-object filtering densities and a multi-object dynamic model. [Paper C] and [Paper D] consider the problem of extended object tracking where an object may generate multiple measurements per time scan. In [Paper C], an extended object Poisson multi-Bernoulli (PMB) filter is presented, where the PMBM posterior density after the update step is approximated as a PMB. In [Paper D], a trajectory PMB filter for extended object tracking using belief propagation is presented, where the efficient PMB approximation is enabled by leveraging the PMBM conjugacy and the factor graph formulation
    corecore