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Abstract
Multi-object tracking (MOT) refers to the process of estimating object trajec-
tories of interest based on sequences of noisy sensor measurements obtained
from multiple sources. Nowadays, MOT has found applications in numerous
areas, including, e.g., air traffic control, maritime navigation, remote sensing,
intelligent video surveillance, and more recently environmental perception,
which is a key enabling technology in automated vehicles. This thesis studies
Poisson multi-Bernoulli mixture (PMBM) conjugate priors for MOT.

Finite Set Statistics provides an elegant Bayesian formulation of MOT based
on random finite sets (RFSs), and a significant trend in RFSs-based MOT is
the development of conjugate distributions in Bayesian probability theory,
such as the PMBM distributions. Multi-object conjugate priors are of great
interest as they provide families of distributions that are suitable to work with
when seeking accurate approximations to the true posterior distributions.

Many RFS-based MOT approaches are only concerned with multi-object
filtering without attempting to estimate object trajectories. An appealing
approach to building trajectories is by computing the multi-object densities
on sets of trajectories. This leads to the development of many multi-object
filters based on sets of trajectories, e.g., the trajectory PMBM filters.

In this thesis, [Paper A] and [Paper B] consider the problem of point object
tracking where an object generates at most one measurement per time scan.
In [Paper A], a multi-scan implementation of trajectory PMBM filters via dual
decomposition is presented. In [Paper B], a multi-trajectory particle smoother
using backward simulation is presented for computing the multi-object poste-
rior for sets of trajectories using a sequence of multi-object filtering densities
and a multi-object dynamic model. [Paper C] and [Paper D] consider the
problem of extended object tracking where an object may generate multi-
ple measurements per time scan. In [Paper C], an extended object Poisson
multi-Bernoulli (PMB) filter is presented, where the PMBM posterior density
after the update step is approximated as a PMB. In [Paper D], a trajectory
PMB filter for extended object tracking using belief propagation is presented,
where the efficient PMB approximation is enabled by leveraging the PMBM
conjugacy and the factor graph formulation.

Keywords: Bayesian filtering, random finite sets, conjugate prior, multi-
object tracking, extended object, trajectory estimation.
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MB: Multi-Bernoulli
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MHT: Multiple hypothesis tracker

MOT: Multi-object tracking
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PGFL: Probability generating functionals

PHD: Probability hypothesis density
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PLF: Posterior linearized filter
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RFS: Random finite set
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CHAPTER 1

Introduction

1.1 Background

Object tracking refers to the problem of using sensor measurements to deter-
mine the location, trajectory, and characteristics of objects of interest [1], [2].
Initially driven by aerospace and defence applications, object tracking has a
long history spanning over decades. In recent times, with the advances in ob-
ject tracking techniques as well as sensing and computing technologies, there
has been an explosion in the use of object tracking technology in numerous
research venues as well as many application areas. Typical examples include
air traffic control, maritime navigation, remote sensing, biomedical research,
intelligent video surveillance, and more recently environmental perception,
which is a key enabling technology in automated vehicles. Specifically, envi-
ronmental perception in automated driving involves processing data collected
from vehicle sensors into an understanding of the world around the vehicle.

This thesis studies Bayesian object tracking algorithms. Bayes’s theorem
provides an elegant and powerful probabilistic framework to solve the object
tracking problem. The goal of Bayesian estimation in object tracking is to
compute the posterior density of the random variables of interest, which en-
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Chapter 1 Introduction

capsulates all the information contained in the measurements [3]. In object
tracking, the objects may not always be detected, and the sensor measure-
ments are noisy and contain clutter. Conventional tracking algorithms con-
sider the problem of point object tracking with the assumption that an object
gives rise to at most one measurement per scan. However, objects may occupy
multiple sensor resolution cells, depending on their distance to the sensor and
the sensor resolution. This gives rise to multiple measurements per scan. The
tracking of such an object is called extended object tracking (EOT) [4], and it
has found more applications with the development of high-resolution sensors,
such as automotive radar and lidar [5]–[9].

In a multi-object scenario, the measurements may originate from one of the
various objects, and the number of objects is generally time-varying due to
objects appearing in and disappearing from the surveillance area [10]. Fun-
damental to this problem is the estimation of both the number of objects and
their trajectories by partitioning measurements into the sets of measurements
originating from different objects and clutter. The major approaches to multi-
object tracking (MOT) include the global nearest neighbour (GNN) filter, the
joint probabilistic data association (JPDA) filter [11], the multiple hypothesis
tracker (MHT) [12], and random finite sets (RFSs) based multi-object filters.

Finite Set Statistics [13] provides a theoretically elegant Bayesian formula-
tion of MOT based on RFSs where the multi-object state is represented as a
finite set of single-object states [14], [15]. Exact closed-form solutions of RFS-
based MOT Bayes filters are captured using multi-object conjugate priors [16],
which means that if we start with the proposed conjugate initial prior, then
all subsequent predicted and posterior distributions have the same form as
the initial prior. MOT conjugate priors are of great interest as they provide
families of distributions that are suitable to work with when seeking accurate
approximations to the true posterior distributions. Two well-established MOT
conjugate priors are the Poisson multi-Bernoulli mixture (PMBM) [17], based
on unlabelled RFSs, and the generalized labelled multi-Bernoulli (GLMB)
[16], based on labelled RFSs. The difference between these two MOT con-
jugate priors mainly lies in 1) whether the elements in RFSs are (uniquely)
labelled, and 2) the modelling of newborn objects, i.e. objects appearing in
the surveillance area.

For the standard multi-object models with Poisson point process (PPP)
birth, the posterior density is a PMBM [17]. The PMBM density has a com-
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pact representation of global hypotheses with probabilistic object existence in
each Bernoulli component and undetected objects represented by a PPP. The
PMBM filtering recursions have been established for point objects [18], for ex-
tended objects [19], [20], as well as for coexisting point and extended objects
[21]. The PMBM filter and its approximations have been successfully applied
not only to tracking of moving objects, but also to the mapping of stationary
objects [22], joint tracking and sensor localization [23], decentralized sensor
fusion [24], sensor management [25], as well as simultaneous localization and
mapping for 5G applications [26].

If the birth model is multi-Bernoulli (MB) instead of Poisson, the filtering
density is a multi-Bernoulli mixture (MBM). The MBM filtering recursion
corresponds to the PMBM filtering recursion by setting the intensity of the
Poisson process to zero and adding Bernoulli components for newborn ob-
jects in the prediction step [27]. The MBM filter can be further extended to
consider MBs with deterministic object existence, which we refer to as the
MBM01 filter, at the expense of increasing the number of global hypotheses
[18]. Both MBM and MBM01 filters can consider object states with labels,
and the (labelled) MBM01 filtering recursion is analogous to the delta GLMB
filtering recursion [28].

Vector-type MOT methods, e.g. the JPDA filter and the MHT, describe
the multi-object states and measurements by random vectors. They explicitly
estimate trajectories; i.e. they associate a state estimate with a previous
state estimate or declare the appearance of a new object. For MOT methods
based on set representations, time sequences of tracks cannot be constructed
easily as the multi-object states are order independent. For this reason, many
RFS-based MOT approaches, e.g. the probability hypothesis density (PHD)
filter [29] and the cardinalized PHD (CPHD) filter [30], are only concerned
with multi-object filtering, in which one aims to estimate the current set of
objects, without attempting to estimate object trajectories. The PMBM filter
has a hypothesis structure similar to MHT [31], but track continuity in the
form of trajectories is not explicitly established as the posterior itself only
provides information about the current set of objects. A categorization of the
multi-object filters mentioned so far is illustrated in Fig. 1.1.

One approach to building trajectories from posterior densities is to add
unique labels to the object states and form trajectories by linking object state
estimates with the same label [16], [32], [33]. Sequential track building ap-
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Multi-object filter

Vector-based

Set-based

GNN

JPDA

MHT

Moment approx.

Conjugate prior

PHD

CPHD

GLMB

MBM01

MBM

PMBM

Figure 1.1: A chart categorizing different multi-object filters.

proaches based on labelling work well in many cases, but they are not always
adequate due to ambiguity in object-to-label associations, e.g. when object
birth is independent and identically distributed, and when objects get in close
proximity and then separate. The above track building problems can be solved
by computing multi-object densities on sets of trajectories [34]. This leads to
the development of trajectory filters including, e.g. the trajectory PHD filter
[35], the trajectory CPHD filter [35], the trajectory PMBM filter [36]–[39], its
approximation to the trajectory Poisson multi-Bernoulli (PMB) filter [40], the
trajectory MBM filter [41], and its approximation to the trajectory MB filter
[42].

Bayes filters use the measurements obtained up until and including the cur-
rent time step for computing the estimate of the current object state. However,
sometimes it is also interesting to exploit the entire measurement history to
arrive at more accurate object state estimates at all the preceding time steps.
This problem can be solved with Bayesian smoothing. The multi-object gen-
eralization of a Bayesian smoother algorithm computes the multi-object den-
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sities at all the preceding time steps given the entire batch of measurements.
Existing literature on multi-object smoothing [15, Chapter 14] only focuses on
computing the multi-object smoothing densities at each time step, which, even
if labelled, may not be enough to provide trajectory information. Multi-object
trajectory filters compute the filtering densities of sets of trajectories and can
therefore directly produce smoothed trajectory estimates using, e.g. the ac-
cumulated state densities [43]. Nevertheless, many MOT methods efficiently
estimate the object states, but cannot easily produce trajectory estimation in
a principled manner. Therefore, how to leverage multi-object filters that do
not keep trajectory information to compute the posterior density of sets of
trajectories needs further investigation.

Contributions
This thesis investigates Bayesian object tracking methods for both point and
extended objects, with a particular focus on Bayesian MOT methods based
on sets of trajectories. [Paper A] and [Paper B] consider the problem of point
object tracking. In [Paper A], the filtering recursions for the trajectory MBM
filter using an MB birth model are presented. In addition, the multi-scan
implementations of trajectory PMBM, MBM, and MBM01 filters using dual
decomposition and N -scan pruning are proposed. In [Paper B], a general solu-
tion for multi-object smoothing and trajectory estimation is presented, along
with its particle implementation using backward simulation. The proposed
multi-object smoother computes the posterior of the set of trajectories from
a sequence of multi-object filtering densities and the multi-object dynamic
model.

[Paper C] and [Paper D] consider the problem of extended object track-
ing. In [Paper C], an extended object PMB filter is presented, where the
PMBM posterior density after the update step is approximated as a PMB.
Two approximation methods are presented: one is based on the track-oriented
multi-Bernoulli (MB) approximation, and the other is based on the variational
MB approximation via Kullback-Leibler divergence (KLD) minimization. In
[Paper D], the PMBM conjugacy for standard multi-object models with a gen-
eralized measurement, in which each object generates an independent set of
measurements, is generalized to sets of trajectories. In addition, a trajectory
PMB filter for extended object tracking using belief propagation is presented,
where the efficient PMB approximation is enabled by leveraging the PMBM
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conjugacy and the factor graph formulation.

1.2 Thesis outline
The remainder of Part I of the thesis is organized as follows. Chapter 2
reviews Bayesian filtering and smoothing in dynamical systems, including a
brief introduction to factor graphs and belief propagation. Chapter 3 covers
the basic concepts and properties of random finite sets as well as metrics
for tracking performance evaluation. Chapter 4 introduces the multi-object
dynamic and measurement models used in this thesis. Chapter 5 presents
the single-object and multi-object conjugacy for object tracking. Chapter 6 is
about multi-object tracking based on sets of trajectories. Chapter 7 provides a
summary of the included papers in this thesis. Finally, Chapter 8 summarizes
the conclusions and possible directions for future work. Part II of the thesis
includes the appended papers.

1.3 Notation
This section introduces the notations used in Part I of the thesis. Vectors are
generally represented by lower-case letters (e.g. x). Matrices are generally
represented by upper-case letters (e.g. X). Sets of vectors are represented
by bold lower-case letters (e.g. x). Sets of trajectories are represented by
bold upper-case letters (e.g. X). Classes of distributions are represented by
calligraphy letters (e.g, X ). Spaces are generally represented by blackboard
bold letters. For example, the n-dimensional Euclidean space is denoted by
Rn and the space of positive integers is denoted by N. The more general
spaces are represented by Fraktur letters (e.g. X). The set of finite subsets of
a space X is represented by F(X).
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CHAPTER 2

Bayesian inference

Bayesian inference in dynamical systems refers to a class of methods that can
be used for estimating the state of a dynamical system which is indirectly
observed through noisy measurements. This chapter covers the basic aspects
of Bayesian inference in dynamical systems. The reader is referred to [3] and
[44] for further readings on these topics.

2.1 Bayesian inference in dynamical systems
The state of the dynamical system at time step k is denoted as xk ∈ Rnx

where nx is the dimension of the state. In the context of object tracking, xk

may represent the object’s position, velocity, and any other motion or extent
parameters of interest of the object at time step k. The state has an initial
prior density p(x0) at time 0, and it evolves in time according to a Markov pro-
cess with transition density p(xk|xk−1), where a Markov process is a random
process in which the future is independent of the past, given the present. At
each time step k, the state is observed through a noisy measurement zk ∈ Rnz

whose likelihood is p(zk|xk). Let x0:k = (x0, x1, . . . , xk) denote the sequence
of states from time step 0 to k. Note that in object tracking the sequence

11



Chapter 2 Bayesian inference

x0:k is used to represent the object trajectory up to time step k. Also, let
z1:k = (z1, . . . , zk) denote the sequence of measurements from time step 1 to
k. The joint density of all the states and measurements up to time step k is
given by

p(x0:k, z1:k) = p(x0)
k∏

j=1
p(xj |xj−1)p(zj |xj). (2.1)

In the Bayesian framework, all the information of interest in the state se-
quence x0:k is given by the posterior density p(x0:k|z1:k), which denotes the
density of x0:k given the measurement sequence z1:k. This density can be
computed by applying Bayes’ rule on (2.1)

p(x0:k|z1:k) = p(x0:k, z1:k)
p(z1:k)

=
p(x0)

∏k
j=1 p(xj |xj−1)p(zj |xj)

p(z1:k) ,

(2.2)

where p(z1:k) is the normalization constant defined as

p(z1:k) =
∫
p(x0:k, z1:k)dx0:k. (2.3)

For long time sequences, it is usually intractable to compute the posterior den-
sity for state sequences, described in (2.2), without approximations. Bayesian
inference in dynamical systems therefore often focuses on the following simpler
problems:

• Filtering: the objective is to compute the density p(xk|z1:k) of the cur-
rent state xk given the measurements up to and including the current
time step.

• Smoothing: the objective is to compute the density p(xj |z1:k) of a past
state xj , where 0 ≤ j < k, given the measurements up to and including
the current time step k.

• Prediction: the objective is to compute the density p(xj |z1:k) of a future
state xj , where j > k, given the measurements up to and including the
current time step k.

However, sometimes it is necessary to approximate the posterior density on
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the entire state sequence rather than focusing on simpler problems, such as
filtering or smoothing. Typical examples include backward simulation par-
ticle smoother [45], view-based simultaneous localization and mapping using
delayed-state filters [46] and MOT where the objective is to infer object tra-
jectories [34], [47], [48].

2.2 Bayesian filtering
In Bayesian filtering, the objective is to compute the filtering density p(xk|z1:k),
which can be done using the Bayesian filtering recursion steps: prediction and
update. Given the filtering density p(xk−1|z1:k−1) and the transition density
p(xk|xk−1) at time step k − 1, the predicted density p(xk|z1:k−1) is given by
the Chapman-Kolmogorov equation

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (2.4)

In the update step, given the predicted density p(xk|z1:k−1) and the measure-
ment distribution p(zk|xk) at time step k, the filtering density at time k is
given by Bayes’ rule

p(xk|z1:k) = p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1) , (2.5)

where the normalization constant is

p(zk|z1:k−1) =
∫
p(zk|xk)p(xk|z1:k−1)dxk. (2.6)

Kalman filtering
The Kalman filter is a closed-form solution to the Bayesian filtering equations
for linear Gaussian dynamic and measurement models:

p(xk|xk−1) = N (xk;Fxk−1, Q), (2.7a)
p(zk|xk) = N (zk;Hxk, R), (2.7b)

where F ∈ Rnx,nx is the transition matrix, Q ∈ Rnx,nx is the covariance matrix
of the process noise, H ∈ Rnz,nx is the observation matrix, and R ∈ Rnz,nz
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is the covariance matrix of the measurement noise. The prior density of the
state at time 0 is p(x0) = N (x0; x̄0|0, P0|0), where x̄0|0 and P0|0 are the a priori
mean and covariance matrix of the state at time step 0.

The prediction and filtering densities at time step k are Gaussian and de-
noted as

p(xk|z1:k−1) = N (xk; x̄k|k−1, Pk|k−1), (2.8a)
p(xk|z1:k) = N (xk; x̄k|k, Pk|k), (2.8b)

where x̄k|k−1 and Pk|k−1 are the mean and the covariance of the predicted
density and x̄k|k and Pk|k are the mean and the covariance of the filtering
density. The parameters of the distributions in (2.8) can be computed with
the following Kalman filter prediction and update steps.

• The prediction step is

x̄k|k−1 = Fx̄k−1|k−1, (2.9a)
Pk|k−1 = FPk−1|k−1F

T +Q. (2.9b)

• The update step is

x̄k|k = x̄k|k−1 +Kk(zk − z̄k), (2.10a)
Pk|k = Pk|k−1 −KkΨT

k , (2.10b)
z̄k = Hx̄k|k−1, (2.10c)

Ψk = Pk|k−1H
T, (2.10d)

Sk = HPk|k−1H
T +R, (2.10e)

Kk = ΨkS
−1
k , (2.10f)

whereKk and Sk are usually referred to as the Kalman gain and the innovation
covariance, respectively. The recursion is started from the prior mean x̄0|0 and
covariance P0|0.

Extended Kalman filter
The Kalman filter is not appropriate when the dynamic and/or measure-
ment models are non-linear. However, the filtering distributions of non-linear
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models can often be approximated by Gaussian distributions. The extended
Kalman filter (EKF) is a “non-linear Kalman filter” based on Taylor series ex-
pansions. For dynamical systems with additive Gaussian noise, the transition
and measurement densities have the form [3, Chapter 5]

p(xk|xk−1) = N (xk; f(xk−1), Q), (2.11a)
p(zk|xk) = N (zk;h(xk), R), (2.11b)

where f(·) and h(·) are possibly non-linear dynamic and measurement model
functions, respectively.

The idea of the EKF is to assume Gaussian approximations

p(xk|z1:k−1) ≈ N (xk; x̄k|k−1, Pk|k−1), (2.12a)
p(xk|z1:k) ≈ N (xk; x̄k|k, Pk|k), (2.12b)

to the prediction and filtering densities, and to use first-order Taylor series
approximations to the non-linear functions f(·) and h(·) around x̄k−1|k−1 and
x̄k|k−1, respectively. Let F (x̄k−1|k−1) be the Jacobian matrix of f(·) evaluated
at x̄k−1|k−1 and let H(x̄k|k−1) be the Jacobian matrix of h(·) evaluated at
x̄k|k−1. The parameters of the distributions in (2.12) can then be computed
with the following EKF prediction and update steps.

• The prediction step is

x̄k|k−1 = f(x̄k−1|k−1), (2.13a)
Pk|k−1 = F (x̄k−1|k−1)Pk−1|k−1F (x̄k−1|k−1)T +Q. (2.13b)

• The update step is

x̄k|k = x̄k|k−1 +Kk(zk − z̄k), (2.14a)
Pk|k = Pk|k−1 −KkΨT

k , (2.14b)
z̄k = h(x̄k|k−1), (2.14c)

Ψk = Pk|k−1H(x̄k|k−1)T, (2.14d)
Sk = H(x̄k|k−1)Pk|k−1H(x̄k|k−1)T +R, (2.14e)
Kk = ΨkS

−1
k . (2.14f)
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There are other non-linear Kalman filters based on Gaussian approxima-
tions in the literature, such as the posterior linearized filter (PLF) [49], un-
scented Kalman filter [50], cubature Kalman filter [51], and iterated approaches,
such as iterative EKF and iterative PLF [49], which may be better alternatives
to the EKF in some situations.

2.3 Bayesian smoothing

In Bayesian smoothing, the objective is to compute the smoothing density
p(xk|z1:K), which is the distribution of the state xk at time step k after receiv-
ing the measurements up to and including a time step K where K > k. The
backward recursive equation for computing the smoothed densities p(xk|z1:K)
for any k < K is given by

p(xk|z1:K) = p(xk|z1:k)
∫
p(xk+1|xk)p(xk+1|z1:K)

p(xk+1|z1:k) dxk+1, (2.15)

where p(xk|z1:k) is the filtering density at time step k and p(xk+1|z1:k) is the
predicted density at time step k + 1.

Rauch-Tung-Striebel smoother

The Rauch-Tung-Striebel smoother (RTSS) [52] gives the closed-form smooth-
ing solution to linear Gaussian models. The smoothing density at time step
k is Gaussian and denoted as

p(xk|z1:K) = N (xk; x̄k|K , Pk|K), (2.16)

where x̄k|K and Pk|K are the mean and the covariance of the smoothed density,
respectively. The parameters of the distribution in (2.16) can be computed
with the following backward recursion equations [52]:

Gk = Pk|kF
TP−1

k+1|k, (2.17a)

x̄k|K = x̄k|k +Gk(x̄k+1|K − x̄k+1|k), (2.17b)
Pk|K = Pk|k +Gk(Pk+1|K − Pk+1|k)GT

k , (2.17c)
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where Gk is the smoothing gain, x̄k|k and Pk|k are the mean and covariance
computed by the Kalman update, and x̄k+1|k and Pk+1|k are the mean and
covariance computed by the Kalman prediction. The recursion is started from
the last time step K with x̄K|K and PK|K , computed using Kalman filtering.

Backward simulation

Bayesian inference in dynamical systems often requires generating samples
from the posterior density p(x0:K |z1:K). This problem can be addressed using
backward simulation [45]. An alternative recursion for the posterior density
p(xk:K |z1:K) without marginalizing out the states after time step k is

p(xk:K |z1:K) = p(xk|xk+1, z1:K)p(xk+1:K |z1:K),
= p(xk|xk+1, z1:k)p(xk+1:K |z1:K),

(2.18)

where p(xk|xk+1, z1:k) is usually referred to as the backward kernel. The
recursion (2.18) evolves backward in time and starts with the filtering density
p(xK |z1:K) at time step K.

Using (2.18), the posterior density p(x0:K |z1:K) can be factorized as

p(x0:K |z1:K) = p(x0)

K−1∏
j=1

p(xj |xj+1, z1:j)

 p(xK |z1:K). (2.19)

Initially, a sample is generated from the filtering density p(xK |z1:K) at time
step K,

xK ∼ p(xK |z1:K). (2.20)

The so-called backward trajectory is then constructed by successively aug-
menting xK with samples generated from p(xk|xk+1, z1:k),

xk ∼ p(xk|xk+1, z1:k), (2.21)

for k = K − 1, . . . , 1. At time step 0, the backward trajectory is augmented
with a sample generated from the initial prior density p(x0). After a complete
backward sweep, the backward trajectory x0:k can be regarded as a realization
from the posterior density p(x0:K |z1:K).

For linear Gaussian models, the backward kernel density p(xk|xk+1, z1:k) is
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Chapter 2 Bayesian inference

a Gaussian
p(xk|xk+1, z1:k) = N (xk;µk,Mk), (2.22)

with

µk = x̄k|k +Gk(xk+1 − Fkx̄k|k), (2.23a)
Mk = Pk|k −GkFPk|k, (2.23b)

where Gk is the smoothing gain (2.17a) in RTSS, and x̄k|k and Pk|k are the
mean and covariance of the filtering density p(xk|z1:k) computed by a Kalman
filter.

2.4 Bayesian inference in factor graphs

In Bayesian statistics, factor graphs are used to represent factorizations of a
probability distribution function, enabling efficient computations [44, Chapter
8]. For inference in factor graphs, the objective is to compute the posterior
distributions of some variables of interest.

Consider a joint distribution over variables x = (x1, . . . , xn) that can be
factorized into a product of factors

p(x) =
∏

s

fs(xs), (2.24)

where xs represents variables involved in factor fs(·). The factor graph repre-
sentation of the joint distribution (2.24) has one variable node for each variable
xi with i ∈ {1, . . . , n} and one factor node for each factor fs(·). There are
undirected links connecting each factor node to all the variable nodes on which
that factor depends. Every factor graph is bipartite since all links go between
nodes of opposite types. For example, consider a distribution that is expressed
in terms of the factorization

p(x1, x2, x3) = fa(x1, x2)fb(x1, x2)fc(x2, x3). (2.25)

Its factor graph representation is shown in Fig. 2.1.
State space models can be represented using factor graphs. For example,

for the dynamical system described in Section 2.1, the joint distribution of
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2.4 Bayesian inference in factor graphs

Figure 2.1: Factor graph representation of (2.25).

Figure 2.2: Factor graph representation of (2.26) for time step k − 1, k and k + 1.

states and measurements is

p(x0, x1, . . . , xK , z1, . . . , zK) = p(x0)
K∏

k=1
p(xk|xk−1)

K∏
k=1

p(zk|xk), (2.26)

and its corresponding factor graph representation is illustrated in Fig. 2.2.

The sum-product algorithm
The sum-product algorithm (SPA), also called belief propagation (BP), is
a technique to evaluate local marginals over nodes or subsets of nodes in a
factor graph [53]. The SPA involves passing messages on the factor graph. If
the variables of interest are all discrete, the message from factor node fs to
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variable node x is

µfs→x(x) =
∑
xs\x

fs(xs)
∏

m∈ne(fs)\x

µxm→fs
(xm), (2.27)

and the message from variable node x to factor node fs is

µx→fs
(x) =

∏
l∈ne(x)\fs

µfl→x(x), (2.28)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor
node fs, and ne(x) denotes the set of factor nodes that are neighbours of the
variable node x. Note that if some variables in xs are continuous, then the
corresponding summations over these variables in (2.27) become integrals.

To initialize the messages in a factor graph without loops (i.e. a tree), we
can pick an arbitrary node as a root node and start all the messages at the
leaf nodes. In particular, the message from leaf variable node x to factor node
fs is

µx→fs(x) = 1, (2.29)

and the message from leaf factor node fs to variable node x is

µfs→x(x) = fs(x). (2.30)

After sending out all the messages, one can compute the marginal distribu-
tion of all variables of interest. The marginal distribution of variables xs is
proportional to the product of the factor fs(xs) and the messages from the
variables xs

p(xs) ∝ fs(xs)
∏

m∈ne(fs)

µxm→fs
(xm), (2.31)

where normalization is required to make sure that p(xs) is a proper probability
mass or density function.

Exact and approximate inference

The SPA provides efficient and exact solution to the marginal distributions
in tree-structured factor graphs. For example, for linear Gaussian state space
models, the Kalman filter can be derived by applying the SPA to the factor
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graph in Fig. 2.2. However, for many practical applications, the factor graph
representation of the joint distribution of variables of interest has loops. One
simple approach to approximate inference in graphs with loops, known as
loopy BP, is to apply the SPA even though there is usually no guarantee
of convergence [53]. To initiate the message passing in graphs with loops,
one common way is to set the initial messages as unit functions. Loopy BP
has proven to be very effective in MOT [54]–[58], cooperative localization [59],
[60], simultaneous localization and mapping [61], and many other applications.
These methods build on the formulation in [62], for which convergence to a
unique solution has been shown to be guaranteed.
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CHAPTER 3

Random finite sets and metrics

Random finite sets (RFSs) are set-valued random variables whose elements
and cardinality are random. This chapter covers the basic concepts and rele-
vant properties of RFSs that will be used in the rest of the thesis. The reader
is referred to [14], [15] for further readings on this topic. Common metrics
used for tracking performance evaluation are also introduced.

3.1 Definition
Let Y be an underlying space, such as a single-object state space X. The state
of a single-object contains the information of interest in the object, which is
usually represented by an n-dimensional vector x in some Euclidean space
Rn. In general, Y can be any Hausdorff, locally compact, and completely
separable topological space [15, Appendix B]. An RFS is a random variable
on the set F(Y) of all the finite subsets of Y. In this thesis, the following
three types of spaces that meet these properties are considered:

• The single-object state space X, which usually contains the object’s lo-
cation and any other motion or extent parameters of interest.
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Chapter 3 Random finite sets and metrics

• The single-measurement space Rnz for measurement models based on
detections, where nz is the dimension of the single-measurement vector.

• The single-object trajectory space T, which contains the information
that characterizes the trajectory of an object.

3.2 Multi-object statistics
This section covers basic multi-object concepts and statistics in terms of the
theory of RFSs.

Set integral and multi-object densities
Given a real-valued function f(·) on the space F(Rnx), its set integral is
defined as ∫

f(x)δx =
∞∑

i=0

1
i!

∫
f({x1, . . . , xi})dx1 · · · dxi. (3.1)

The set integral sums over all possible cardinalities and all possible object
states for each cardinality. A function f(·) is a multi-object density, if f(·) ≥ 0
and its set integral is one.

Convolution formula for multi-object densities
Let x1, . . . ,xn ∈ F(X) be n statistically independent RFSs with multi-object
densities f1(·), . . . , fn(·), respectively. Then the multi-object density f(·) of
the union y = x1 ∪ · · · ∪ xn is given by the convolution formula

f(y) =
∑

y=x1⊎···⊎xn

n∏
i=1

fi(xi), (3.2)

where ⊎ stands for disjoint union and the summation is taken over all mutually
disjoint (and possibly empty) subsets x1, . . . ,xn whose union is y.

Probability generating functionals
Let h be a test function on the single-object space such that h(x) is unitless
and 0 ≤ h(x) ≤ 1. The probability generating functionals (PGFL) of an RFS
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x is defined as
G[h] =

∫
hxf(x)δx, (3.3)

where f(·) is the multi-object density of x and hx is the power functional
defined as

hx =
{

1 if x = ∅∏
x∈x h(x) if x ̸= ∅.

(3.4)

The PGFL of an RFS completely characterizes its multi-object density, and
it is useful for deriving multi-object filters.

Cardinality distribution
The cardinality of a set x, denoted by |x|, is the number of elements in the set.
The number of elements of an RFS is a random variable and characterized by a
probability mass function, which is referred to as the cardinality distribution.
The cardinality distribution of an RFS with multi-object density f(·) is given
by

ρ(n) = 1
n!

∫
f({x1, . . . , xn})dx1 · · · dxn. (3.5)

The value of ρ(n) is the probability that x contains n elements.

Probability hypothesis density
The probability hypothesis density (PHD), also referred to as the intensity
function, of an RFS with multi-object density f(·) is defined on the single-
object space X as

D(x) =
∫
f({x} ∪ x)δx

=
∞∑

i=0

1
i!

∫
f({x, x1, . . . , xi})dx1 · · · dxi.

(3.6)

The integral of the PHD in a region A ⊆ X yields the expected number N̂A of
objects in this region

N̂A =
∫
A
D(x)dx. (3.7)
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3.3 Important multi-object processes
This section introduces some standard types of multi-object processes that
will be used in this thesis. They are the Poisson RFSs, the Bernoulli RFSs,
the multi-Bernoulli (MB) RFSs and the MB mixture (MBM) RFSs.

Poisson RFSs
In a Poisson RFS, also referred to as Poisson point process (PPP), the cardi-
nality of the set is Poisson distributed and, for each cardinality, its elements
are independent and identically distributed. The multi-object density for a
Poisson RFS x = {x1, . . . , xn} is given by

f(x) = e−λλn
n∏

i=1
p(xi), (3.8)

where λ ≥ 0 is the parameter of the Poisson cardinality distribution and p(·)
denotes a single-object density. A Poisson RFS can be characterized by either
its PHD/intensity function D(x) = λp(x) or by λ and p(·). Therefore, the
multi-object density of the Poisson RFS x = {x1, . . . , xn} can be alternatively
expressed as

f(x) = e−
∫

D(x)dx
n∏

i=1
D(xi). (3.9)

Bernoulli RFSs
In a Bernoulli RFS, the cardinality of the set is Bernoulli distributed. The
multi-object density for a Bernoulli RFS x is given by

f(x) =
{

1 − r if x = ∅
rp(x) if x = {x},

(3.10)

where r is the probability of existence and p(·) is the single-object density
of the object if it exists. A Bernoulli RFS is characterized by r and p(·).
Every Bernoulli density can be expanded into a Bernoulli mixture density
containing two terms with deterministic probability of existence r = 0 and
r = 1, respectively.
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Multi-Bernoulli RFSs
An MB RFS corresponds to the union of a finite number n of independent
Bernoulli RFSs. The multi-object density of an MB RFS x is given by

f(x) =
∑

x1⊎···⊎xn=x

n∏
i=1

fi(xi), (3.11)

where fi(·) is the ith Bernoulli component characterized by a probability ri

of existence and a single object density pi(·). Therefore, an MB RFS is char-
acterized by the set of parameters {(r1, p1(·)), . . . , (rn, pn(·))}.

Multi-Bernoulli mixture RFSs
An MB mixture (MBM) RFS is a weighted sum of MB RFSs. The multi-object
density for an MBM RFS x is given by

f(x) =
H∑

h=1
wh

∑
x1⊎···⊎xn=x

n∏
i=1

fh
i (xi), (3.12)

where w1, . . . , wH are non-negative weights such that
∑H

i=1 w
h = 1 and fh

i (xi)
are Bernoulli RFS densities for i = 1, . . . , n and h = 1, . . . ,H.

An MBM01 is defined as an MBM for which in each mixture component,
every Bernoulli component has probability of existence of either 0 or 1. Any
MB or MBM distribution can be represented as a MBM01 with a greater
number of mixture components.

3.4 Metrics on object tracking
This section introduces some standard single object metrics and MOT metrics
for sets of objects.

Definition
It is important that the tracking performance is measured consistently. Met-
rics ensure that the “distance” between the estimate and the ground truth is

27



Chapter 3 Random finite sets and metrics

mathematically meaningful. A metric d on a space Y is a distance function

d : Y × Y → [0,∞), (3.13)

where for all x, y, z ∈ Y the following four conditions are satisfied:

Non-negativity: d(x, y) ≥ 0. (3.14a)
Identity of indiscernible: d(x, y) = 0 ⇔ x = y. (3.14b)

Symmetry: d(x, y) = d(y, x). (3.14c)
Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z). (3.14d)

Single-object metrics
The Euclidean metric of order p between a state x and a corresponding esti-
mate x̂ is defined as

dp(x, x̂) = ∥x− x̂∥p, (3.15)

where ∥ · ∥p denotes the Lp-norm.
For performance evaluation of extended object estimates with ellipsoidal

extents, a comparison study in [63] has shown that the Gaussian Wasserstein
distance (GWD) is a good choice. The GWD between an extended object
state ξ = (x,E), where E is positive symmetric matrix used to represent the
extent of an elliptic object, and a corresponding estimate ξ̂ =

(
x̂, Ê

)
of order

2 is defined as [64]

dGW(ξ, ξ̂) =
(

∥Hx−Hx̂∥2
2 + trace

(
E + Ê − 2

(
EÊ

) 1
2
)) 1

2

, (3.16)

where the observation matrix H picks out the position from the kinematic
state vector and E1/2 denotes the matrix square root of E.

Multi-object metrics
In MOT, it is important to measure not only the state estimation error but
also the cardinality estimation error due to misdetections and false detections.
The different cardinality-related errors include:

• Misdetections: true objects for which there are no corresponding esti-
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mates.

• False detections: object estimates for which there are no corresponding
true objects.

An MOT metric computes the “distance” between a set of object states x
and a corresponding set estimate x̂. It is assumed that a single object metric
d(x, x̂) is given. Further, let

d(c)(x, x̂) = min(c; d(x, x̂)) (3.17)

denote the distance cut-off at a distance c > 0 where c is a parameter.

OSPA

The Optimal Sub-Pattern Assignment (OSPA) multi-object metric is defined
as [65], [66]

d(c)
p (x, x̂) =
(

1
|x̂|

(
minπ∈Π|x̂|

∑|x|
i=1 d

(c) (xi, x̂π(i)
)p + cp (|x̂| − |x|)

)) 1
p if |x̂| ≥ |x|(

1
|x|

(
minπ∈Π|x|

∑|x̂|
i=1 d

(c) (x̂i, xπ(i)
)p + cp (|x| − |x̂|)

)) 1
p if |x̂| < |x|,

(3.18)

where c > 0, 1 ≤ p < ∞, and Πi is the set of permutations of the set of
integers {1, . . . , i} for any i ∈ N and for any element π = (π(1), . . . , π(i)) ∈ Πi.
The parameter p determines the severity of penalizing the outliers in the
localization component. The OSPA metric (for the case |x̂| ≥ |x|) can be
decomposed into two parts:

• Normalized sum of state errors: 1
|x̂|
∑|x|

i=1 d
(c) (xi, x̂π(i)

)p.

• Normalized cardinality error: 1
|x̂|c

p(|x̂| − |x|).

GOSPA

The OSPA metric only accounts for localization errors for the objects in the
smallest set and cardinality mismatch; this is not desired in traditional MOT
performance evaluation. For example, OSPA does not encourage trackers to
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have as few misdetections and false detections as possible. As a solution to
this, the generalized OSPA (GOSPA) multi-object metric was proposed in
[67], which is able to penalize localization errors for properly detected objects,
misdetections and false detection. The GOSPA metric is defined as

d(c,α)
p (x, x̂) =
(

minπ∈Π|x̂|

∑|x|
i=1 d

(c) (xi, x̂π(i)
)p + cp

α (|x̂| − |x|)
) 1

p if |x̂| ≥ |x|(
minπ∈Π|x|

∑|x̂|
i=1 d

(c) (x̂i, xπ(i)
)p + cp

α (|x| − |x̂|)
) 1

p if |x̂| < |x|,
(3.19)

where c > 0, 1 ≤ p < ∞ and 0 < α ≤ 2.
When the GOSPA metric is used for MOT performance evaluation to mea-

sure the “distance” between the true set of object states x and the estimated
set of object states x̂, it is most appropriate to set α = 2. In this case, the
GOSPA metric can be re-written as

d(c,2)
p (x, x̂) =

 min
θ∈Θ(|x|,|x̂|)

∑
(i,j)∈θ

d(c) (xi, x̂j
)p + cp

2 (|x| − |θ| + |x̂| − |θ|)

 1
p

,

(3.20)
where Θ(|x|,|x̂|) is the set of all possible 2D assignments. An assignment set
θ between the sets {1, . . . , |x|} and {1, . . . , |x̂|} is a set that has the following
properties: θ ⊆ {1, . . . , |x|} × {1, . . . , |x̂|}, (i, j), (i, j′) ∈ θ ⇒ j = j′ and
(i′, j), (i, j) ∈ θ ⇒ i = i′ where the last two properties ensure that every i and
j gets at most one assignment. Equation (3.20) facilitates the decomposition
of the GOSPA metric into three parts:

• Sum of state errors (to the p-th power):
∑

(i,j)∈θ d
(c) (xi, x̂j

)p.

• Misdetection error: cp

2 (|x| − |θ|).

• False detection error: cp

2 (|x̂| − |θ|).

Compared to the OSPA metric in (3.18), there is no normalization factor
max(|x|, |x̂|) and an additional parameter α has been introduced. Setting α =
1 gives the OSPA metric without normalization. Moreover, it has been shown
in [68] that the spooky effect arises in optimal estimation of multiple objects
with the OSPA metric; however, this is not the case for the GOSPA metric
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with α = 2. Furthermore, an analysis in [69] shows that GOSPA (α = 2) is
more suitable for metric-driven sensor management for usual multiple target
estimation tasks than OSPA, where the optimal action should be in principle
taken for each sensor independently.

31





CHAPTER 4

Multi-object modelling

The formulation of an MOT problem needs systematic formal modelling for
multi-object dynamics and measurements. This chapter introduces the multi-
object dynamic and measurement models used in this thesis.

4.1 Multi-object dynamic model
Multi-object dynamic models should include models for the motion of indi-
vidual objects as well as models for object appearance and disappearance to
handle an unknown and time-varying number of objects. In MOT literature,
object appearance and disappearance are often referred to as object birth and
death, respectively. The multi-object dynamic model π(xk+1|xk) used in this
thesis is based on the following assumptions:

• Single object with state xk at time step k moves to a new state xk+1 at
time step k + 1 with a Markov transition density π(xk+1|xk).

• A single object with state xk at time step k has a probability PS(xk) of
surviving into time step k + 1.
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• The RFS of objects at time step k+ 1 is the union of the RFS of objects
that survive from time step k to time step k+ 1, denoted xS

k+1, and the
RFS of newborn objects, denoted xB

k+1,

xk+1 = xS
k+1 ∪ xB

k+1. (4.1)

• Object birth, object death, and object motion are conditionally inde-
pendent of the previous multi-object state.

Birth models
The RFS models for object birth include a model for the number of objects
expected to be born, i.e. a birth cardinality distribution, and a model for the
states of the newborn objects, i.e. a birth state density. In many cases, a new
object can appear anywhere in the surveillance area, so it is important to use
a spatial distribution that covers the entire area. In some cases, objects may
only be born in specific areas, and it is then more suitable to use a spatial
distribution localized to those areas.

Poisson birth model

To model the number of new objects that appear at a time step as being
Poisson distributed is the most common choice in MOT. When using RFSs
to model MOT, a Poisson number of new objects means that the object birth
is modelled as a Poisson RFS. For a Poisson birth model, at time step k a
possibly empty set of newborn objects xB

k appears, distributed according to
a Poisson RFS with intensity λB

k (xk). That the set is possibly empty means
that it is possible that no object is born at all in that time step.

The birth cardinality distribution is Poisson, with parameter λ̄B
k ,

ρ(nB
k = j) = e−λ̄B

k

(
λ̄B

k

)j

j! , (4.2)

where
λ̄B

k =
∫
λB

k (xk)dxk, (4.3)

which is the expected number of births. For a non-empty set of new objects,
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their states are independent and identically distributed (i.i.d.) with density

λB
k (xk)
λ̄B

k

. (4.4)

The most common representation of the Poisson RFS birth intensity is an
unnormalized density mixture,

λB
k (xk) =

NB
k∑

i=1
wB,i

k pB,i
k (xk), (4.5)

where
∑NB

k
i=1 w

B,i
k = λ̄B

k and
∫
pB,i

k (xk)dxk = 1 for i ∈ {1, . . . , NB
k }. In this

case, the birth parameters are the set of weights and densities,{(
wB,i

k , pB,i
k (·)

)}NB
k

i=1
. (4.6)

For Gaussian implementations, it is suitable to let the Poisson RFS intensity
be a Gaussian mixture,

λB
k (xk) =

NB
k∑

i=1
wB,i

k N
(
xk; x̄B,i

k , PB,i
k

)
, (4.7)

with each Gaussian component covering an area that new objects may appear.

Bernoulli and multi-Bernoulli birth models

Object birth models can be also built upon Bernoulli RFSs. For a Bernoulli
birth model, at time step k an object is born with probability rB

k (i.e. no
object with probability 1 − rB

k ), and if an object is born, the initial object
state xk has density pB

k (xk). In a Bernoulli birth model, the probability of
birth rB

k gives the birth cardinality distribution, which is a Bernoulli,

ρ(nB
k = j) =


1 − rB

k if j = 0
rB

k if j = 1
0 otherwise,

(4.8)
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where nB
k denotes the number of births at time step k.

It is more general to use an MB birth model, which is the union of indepen-
dent Bernoulli births. The parameters of an MB birth are the set of Bernoulli
birth parameters, {(

rB,i
k , pB,i

k (·)
)}NB

k

i=1
. (4.9)

For an MB birth model, the expected number of births is given by the sum
of the probabilities of birth

∑NB
k

i=1 r
B,i
k . The MB birth cardinality distribution

is given by the convolution of the Bernoulli birth cardinality distributions. In
case rB,i

k = r for all i, then the birth cardinality distribution is a Binomial,

ρ(nB
k = j) =

{(
nB

k
j

)
rj(1 − r)nB

k −j if nB
k = {0, 1, . . . , NB

k }
0 if nB

k > NB
k .

(4.10)

Compared to the Poisson birth model, the MB birth model bounds a priori
the number of objects that can appear in the surveillance area. For linear and
Gaussian models, it is suitable to let the Bernoulli birth densities be Gaussian,

pB,i
k (xk) = N (xk; x̄B,i

k , PB,i
k ). (4.11)

Single-object dynamic models
This section introduces two common 2D single-object dynamic models used
in this thesis. A survey of dynamic models for object tracking is given in [70].

Nearly constant velocity model

In this model, the single object state at time step k is xk = [pk,x, vk,x, pk,y, vk,y]T
where [pk,x, pk,y]T is the position vector and [vk,x, vk,y]T is the velocity vector.
The single object state transition density from the object state xk at time step
k to the object state xk+1 at time step k + 1 is

π(xk+1|xk) = N (xk+1;Fxk, Q), (4.12)

where

F = I2 ⊗
[
1 T

0 1

]
, (4.13a)
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Q = σ2
v̇I2 ⊗

[
T 3/3 T 2/2
T 2/2 T

]
. (4.13b)

Here T is the sampling time, σv̇ is a parameter controlling the process noise
level, In is the identity matrix of size n, and ⊗ denotes the Kronecker product.

Coordinate turn model with polar velocity

In this model, the single object state at time step k is xk = [pk,x, pk,y, vk, ϕk, ωk]T
where [pk,x, pk,y]T is the position vector, vk is the polar velocity, ϕk is the head-
ing and ωk is the turn rate. By linearization first and then discretization, the
relation between the object state xk at time step k and the object state xk+1
at time step k + 1 can be written as

xk+1 =


pk,x + (2vk/ωk) sin(ωkT/2) cos(ϕk + ωkT/2)
pk,y + (2vk/ωk) sin(ωkT/2) sin(ϕk + ωkT/2)

vk

ϕk + ωkT

ωk

+ wk, (4.14)

where wk is white noise with covariance

Q = blkdiag
([

0 0
0 0

]
, T 2σ2

v̇ ,

[
T 3/3 T 2/2
T 2/2 T

]
σ2

ω̇

)
, (4.15)

where blkdiag denotes block diagonalization, and σ2
v̇ and σ2

ω̇ are parameters
controlling the process noise level.

4.2 Multi-object measurement model
Multi-object measurement models should include models for the measure-
ments originating from individual objects as well as models for clutter mea-
surements, i.e. measurements not originating from objects. This section intro-
duces the standard (single-sensor) multi-object measurement model g(zk|xk)
with a generalized measurement model [21], where each object generates an
independent set of measurements. This measurement model is based on the
following common assumptions:

• The measurement set zk at time step k is an RFS consisting of the RFS
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zO
k (xk) of measurements generated by the set of objects with states xk

and the RFS zC
k of clutter measurements, i.e.

zk = zO
k (xk) ∪ zC

k . (4.16)

• The RFSs zO
k (xk) and zC

k are statistically independent.

• No measurement is generated by more than one object.

• Given a set xk of objects, each object xk ∈ xk is either detected with
probability PD(xk) and generates a set of measurements zO

k (xk) with
conditional density g(zO

k (xk)|xk), or missed with probability 1−PD(xk).

• The RFS zC
k is a Poisson RFS with intensity λC

k (·).

Both point and extended object measurement models are special cases of this
generalized measurement model.

Point objects
In point object tracking, it is assumed that each object generates at most
a single measurement per time step, i.e. a single resolution cell is occupied
by an object. In this case, |zO(x)| ≤ 1, and the single-object measurement
likelihood for a point object is

p(zO(x)|x) =


PD(x)g(z|x) zO(x) = {z}
1 − PD(x) zO(x) = ∅
0 otherwise.

(4.17)

Extended objects
In extended object tracking (EOT), each object may generate multiple mea-
surements per time step and the measurements are spatially distributed around
the objects, i.e. multiple resolution cells are occupied by an object [71]. In this
case, it is commonly assumed that PD(x) = 1 and that the object-generated
measurements zO(x) are modelled by a Poisson RFS [72]. This models the
number of detections as |zO(x)| Poisson distributed with a rate λO(x) that is
a function of the object state x. The single-object measurement likelihood for
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an extended object is

p(zO(x)|x) = e−λO(x)λO(x)|zO(x)|
∏

z∈zO(x)

g(z|x). (4.18)

It is also possible to model the object-generated measurements zO(x) as a
zero-inflated Poisson RFS, and in this case the single-object measurement
likelihood is

p(zO(x)|x) =
{
PD(x)e−λO(x)λO(x)|zO(x)|∏

z∈zO(x) g(z|x) zO(x) ̸= ∅
1 − PD(x) + PD(x)e−λO(x) zO(x) = ∅.

(4.19)
The zero-inflated Poisson RFS may offer more flexibility when modelling ob-
ject occlusion than the Poisson RFS.
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CHAPTER 5

Multi-object conjugate priors for multi-object tracking

Due to the unknown correspondence between measurements and object states,
MOT is combinatorial in nature, and thus is highly computationally demand-
ing. MOT conjugate priors are one tool for managing complexity, by ex-
ploiting forms which maintain structure through prediction and update steps.
This chapter introduces single-object and multi-object conjugacy used in this
thesis.

5.1 Conjugate prior
If L is a class of measurement likelihoods g(z|x), and F is a class of prior
distributions for x, then the class F is conjugate for L if

p(x|z) ∈ F , ∀ g(z|x) ∈ L and ∀ p(x) ∈ F . (5.1)

Many examples of conjugate priors can be found from the exponential family
of distributions. In each of these cases, the posterior has the same form with
the same number of parameters as the prior.

Another common structure is when the prior family contains mixtures of
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Chapter 5 Multi-object conjugate priors for multi-object tracking

distributions of a given form. Let F̄ denote the family of mixtures of dis-
tributions in F , and let L̄ denote the family of mixtures of likelihoods in
L . It can be shown that, if F is conjugate for the measurement likelihood
L , then F̄ is also conjugate for L , and the posterior will contain the same
number of mixture components as the prior. Further, F̄ is also conjugate
for L̄ , but the number of mixture components in the posterior will be the
product of the number of components in the prior and in the measurement
likelihood. In this case, the posterior is in the same form, but the complexity
of the representation grows and eventually approximation becomes necessary
[73]. Many examples of this kind can be found in (multiple) object tracking
in clutter.

5.2 Single-object conjugate prior
If L is a class of measurement likelihoods g(zk|xk), T is a class of transition
densities π(xk|xk−1), and F is a class of single-object densities for x, then the
class F is single-object conjugate for L and T if

p(xk|z1:k−1) ∈ F , ∀ π(xk|xk−1) ∈ T and p(xk−1|z1:k−1) ∈ F , (5.2)
p(xk|z1:k) ∈ F , ∀ g(zk|xk) ∈ L and p(xk|z1:k−1) ∈ F . (5.3)

Single-object conjugate priors can be understood as a generalization of conju-
gacy, which originally only concerns the Bayesian update, to the whole filtering
recursion [73].

Gaussian conjugate prior
Single point object tracking typically concerns the following Bayesian filtering
recursions:

p (xk|z1:k) = g (zk|xk) p (xk|z1:k−1)∫
g (zk|yk) p (yk|z1:k−1) dyk

, (5.4)

p (xk|z1:k−1) =
∫
π (xk|xk−1) p (xk−1|z1:k−1) dxk−1. (5.5)

The Kalman filter, introduced in Section 2.2, is an example of single-object
filters based on single-object conjugate prior where both the predicted density
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5.2 Single-object conjugate prior

and the posterior density are Gaussian.

Gamma Gaussian inverse-Wishart conjugate prior

For EOT using the Poisson spatial model and the so-called random matrix
approach, the objects are assumed to have elliptic shapes, and the Bayesian
filtering recursions are

p(ξk|z1:k) = g(zk|ξk)p(ξk|z1:k−1)∫
g(zk|ςk)p(ςk|z1:k−1)dςk

, (5.6)

p(ξk|z1:k−1) =
∫
πk(ξk|ξk−1)p(ξk−1|z1:k−1)dξk−1, (5.7)

where ξk = (γk, xk, Xk) is a combination of a Poisson rate γk, a kinematic state
vector xk and an extent matrix Xk. Various random matrix approaches with
different prediction and update steps have been proposed in the literature;
see [4, Section III.A] for an overview. Here the random matrix approach with
improved noise modelling proposed in [74] is taken as an example to motivate
the use of a gamma Gaussian inverse-Wishart (GGIW) conjugate prior in
EOT.

For the improved noise modelling with the number of measurements being
Poisson, the measurement likelihood can be factorized as

g(zk|ξk) = e−γkγ
|zk|
k

∏
zk∈zk

N (zk;Hxk, ρXk +R), (5.8)

where ρ is a scaling factor and R is the measurement noise covariance matrix.
The Bayesian conjugate prior for an unknown Poisson rate is the gamma dis-
tribution. Also, for Gaussian measurements, the conjugate priors for unknown
mean and covariance are the Gaussian and the inverse-Wishart distributions,
respectively. This motivates the use of a GGIW representation for the object
state density,

p(ξk|z1:k) = G(γk;αk|k, βk|k)N (xk; x̄k|k, Pk|k)IW(Xk; νk|k, Vk|k), (5.9)

where G(γk;αk|k, βk|k) represents a gamma distribution with shape αk|k and
rate βk|k, and IW(Xk; νk|k, Vk|k) represents an inverse-Wishart distribution
with degrees of freedom νk|k and scale matrix Vk|k. For a GGIW prior of
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Chapter 5 Multi-object conjugate priors for multi-object tracking

the form (5.9), and a measurement likelihood of the form (5.8), the measure-
ment update (5.6) is not analytically tractable; however, the filtering density
p(ξk|z1:k) can still be approximated as a GGIW. The approximate update
can be based on the approximation of non-linear functions of the extent using
either matrix square roots [74] or variational Bayesian inference [75].

The GGIW conjugacy also holds for the prediction step. Early works use a
Wishart transition density of the extent matrix, where the prediction step has
no closed-form solution, but the predicted density (5.7) can be approximated
as a GGIW by either applying a simple heuristic or minimizing the KLD [76].
A recent work in [77] shows that the predicted density is guaranteed to be of
inverse Wishart form by modelling the state transition density of the object
extent as a non-central inverse Wishart distribution.

5.3 Multi-object conjugate prior
If L is a class of multi-object measurement likelihoods g(zk|xk), T is a class
of multi-object transition densities π(xk|xk−1), and F is a class of multi-
object densities for x, then the class F is multi-object conjugate for L and
T if

p(xk|z1:k−1) ∈ F , ∀ π(xk|xk−1) ∈ T and p(xk−1|z1:k−1) ∈ F , (5.10)
p(xk|z1:k) ∈ F , ∀ g(zk|xk) ∈ L and p(xk|z1:k−1) ∈ F . (5.11)

Multi-object conjugacy is a generalization of the single-object conjugacy to
consider the multi-object prediction and update,

p(xk|z1:k−1) =
∫
π(xk|xk−1)p(xk−1|z1:k−1)δxk−1, (5.12)

p (xk|z1:k) = g (zk|xk) p (xk|z1:k−1)∫
g (zk|yk) p (yk|z1:k−1) δyk

. (5.13)

Multi-object conjugacy is important for designing MOT algorithms. With the
use of multi-object conjugacy, it is convenient to

• express the theoretically exact density (for the given models),

• describe which parameters are needed to represent the density,

• find computationally tractable approximations, and
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5.3 Multi-object conjugate prior

• analyze the approximation error.

For the multi-object models introduced in Chapter 4, there are two known
classes of multi-object conjugate priors for both point and extended objects:
the MBM densities [16], [27], [78] for MB (and more general MBM) birth
model and the Poisson MBM (PMBM) densities [17]–[19], [21] for Poisson
(and more general PMBM) birth model.

Multi-Bernoulli mixture conjugate prior

For the MB(M) birth, the MBM density MBMk|k(xk) is a multi-object conju-
gate prior to the multi-object transition density π(xk|xk−1) and measurement
model g(zk|xk) [27]. In other words, if the posterior density at time step k−1
is an MBM, then the predicted density at time step k is an MBM,

MBMk|k−1(xk) =
∫
π(xk|xk−1)MBMk−1|k−1(xk−1)δxk−1. (5.14)

Further, if the prior density at time step k is an MBM, then the Bayes posterior
at time step k is an MBM,

MBMk|k (xk) =
g (zk|xk) MBMk|k−1 (xk)∫
g (zk|yk) MBMk|k−1 (yk) δyk

. (5.15)

The MBM density is defined as

MBMk|k(xk) =
Hk∑

hk=1
whk

k|kMBhk

k|k (xk) (5.16a)

=
Hk∑

hk=1
whk

k|k

∑
⊎xi

k
=xk

N
hk
k∏

i=1
Bi,hk

k|k
(
xi

k

)
, (5.16b)

where MB(·) and B(·) denote the multi-Bernoulli density (3.11) and the
Bernoulli density (3.10), respectively. Each global hypothesis hk corresponds
to a sequence of data associations, Hk denotes the number of global hypothe-
ses, and the weight whk

k|k is the probability of the global hypothesis hk. The
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Figure 5.1: The block diagram of the MBM filter.

MBM density is fully parameterized by the parameters,{(
whk

k|k,
{(
ri,hk

k|k , p
i,hk

k|k (·)
)}N

hk
k

i=1

)}Hk

hk=1

. (5.17)

Predicting (5.14) and updating (5.15) the MBM density then comes down to
computing the predicted and updated parameters.

The MBM filter is an MOT algorithm based on the MBM conjugate prior
and consists of four building blocks: 1) prediction, 2) update, 3) reduction,
and 4) estimation. A block-diagram for the MBM filter is presented in Fig.
5.1. MBM reduction typically consists of 1) pruning MBs with low weights
and 2) pruning Bernoullis with low probability of existence. The reader is
referred to [27] for explicit equations and implementation details of the MBM
filter.

The MBM01 filter is based on the MBM01 conjugate prior. It has the same
filtering recursion as the MBM filter but performs MBM01 expansion after the
prediction step. This results in an hyper-exponential increase in the number
of global hypotheses in the MBM01 filter. The δ-generalized labelled multi-
Bernoulli (δ-GLMB) filter [28] is equivalent to the labelled MBM01 filter where
labels are used for sequential track formation.

Poisson multi-Bernoulli mixture conjugate prior
With a Poisson birth, the PMBM density PMBMk|k(xk) is a multi-object
conjugate prior to the standard multi-object models [17], [18], [21]. If the
posterior at time step k − 1 is PMBM, then for the standard multi-object
transition density π(xk|xk−1) [14] the predicted multi-object density is also
PMBM,

PMBMk|k−1 (xk) =
∫
π (xk|xk−1) PMBMk−1|k−1 (xk−1) δxk−1. (5.18)
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Further, if the predicted multi-object density at time step k is PMBM, then for
the standard point and extended multi-object measurement model g(zk|xk)
the Bayes posterior is also PMBM

PMBMk|k (xk) =
g (zk|xk) PMBMk|k−1 (xk)∫
g (zk|yk) PMBMk|k−1 (yk) δyk

. (5.19)

When using the PMBM conjugate prior for MOT, the set of objects xk

at time step k is the union of detected objects and undetected objects, i.e.
xk = xd

k ⊎ xu
k . The set of detected objects xd

k consists of objects that the
sensors have detected at least once. The set of undetected objects xu

k consists
of objects that have never been detected by any of the sensors (but that are
within the region in which the objects are modelled).

The PMBM density is defined as

PMBMk|k (xk) =
∑

xu
k

⊎xd
k

=xk

Pu
k|k (xu

k) MBMd
k|k
(
xd

k

)
, (5.20)

with a PPP density Pu
k|k(·) for undetected objects, and an MBM density

MBMd
k|k(·) for detected objects. The undetected PPP intensity is typically

an unnormalized density mixture,

λu
k|k (xk) =

Nu
k∑

t=1
w̃u,t

k|kp
u,t
k|k (xk) , (5.21)

whose parameters are {(
w̃u,t

k|k, p
u,t
k|k(·)

)}Nu
k

t=1
. (5.22)

The MBM density, defined in (5.16), for detected objects has parameters
(5.17). Therefore, the PMBM density is fully parameterized by the parameters
(5.22) and (5.17). A PMBM becomes an MBM if the intensity of the PPP is
zero.

The PMBM density captures relevant uncertainties in MOT elegantly. In
MOT the number of objects is unknown, and in the PMBM density this is
captured by both the Bernoulli probabilities of existence, and by the unde-
tected PPP intensity. The uncertainty about the object states are captured
by the Bernoulli state densities for detected objects, and by the PPP inten-
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Figure 5.2: The block diagram of the PMBM filter.

sity for undetected objects. Lastly, the unknown data association in MOT is
captured by the MB mixture, where each mixture component corresponds to
a sequence of (global) data associations, and the component weights are the
estimated probability of the corresponding global associations.

The PMBM filter is an MOT algorithm based on the PMBM conjugate
prior. The PMBM filter has a hypothesis structure that is similar to MHT,
see, e.g. [17], [31] for detailed discussions. Similar to the MBM filter, the
PMBM filter also consists of four building blocks: 1) prediction, 2) update,
3) reduction, and 4) estimation. A block-diagram for the PMBM filter is
presented in Fig. 5.2. Here recycling means that Bernoullis with low prob-
ability of existence are approximated as a PPP and added to the PPP for
undetected objects [79]. Compared to Bernoulli pruning, the information
contained in the Bernoullis can be approximately retained in the PPP via
recycling. The PMBM filter has a more efficient representation of the hy-
potheses than the MBM filter, thanks to the fact that the initiation of new
Bernoullis is measurement-driven. Comparisons of MBM and PMBM filters
have shown that, in terms of computational cost and estimation error, PMBM
filter have better performance, see, e.g. [19], [27], [37], [80]. The reader is re-
ferred to [17]–[19] for explicit equations and implementation details of the
PMBM filter.

It is also useful to consider a PMB approximation to the PMBM density
(5.20), which offers a trade-off between computational complexity and estima-
tion performance. The PMB filter is a computationally efficient approximation
of the PMBM filter by performing the PMB approximation after each update.
Various PMB approximation methods exist for both point and extended ob-
jects [17], [81], among which the one based on variational approximation [81]
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has the best performance when objects move in close proximity.
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CHAPTER 6

Multi-object tracking based on sets of trajectories

In RFS-based algorithms for MOT, the main focus has been on the filtering
problem. The object state estimates can be easily extracted from the multi-
object filtering densities; however, it is not obvious how to build trajectories
in a sound manner. A fully Bayesian approach to MOT should characterize
the distribution of the trajectories given the measurements, as it contains all
information about the trajectories. Performing MOT on sets of trajectories
can be attained by considering multi-object density functions in which objects
are trajectories [34], referred to as multi-trajectory densities. This chapter
briefly reviews basic concepts of sets of trajectories and PMBM conjugate
priors for sets of trajectories [36], [38], [82], [83]. In addition, a metric on
the space of finite sets of trajectories [84] is introduced for MOT performance
evaluation in terms of trajectory estimation error.

6.1 Sets of trajectories
This section reviews the state representation of trajectories and the integration
of trajectory densities. In addition, possible problem formulations of MOT
based on sets of trajectories used in this thesis are introduced.
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Single trajectory

A trajectory consists of a sequence of object states that can start at any
time step and end at any time after it starts. Mathematically, a trajectory is
represented as a variable X = (t, x1:i) where t is the initial time step of the
trajectory, i is its length, and x1:i = (x1, . . . , xi) denotes a sequence of length
i that contains the object states at consecutive time steps of the trajectory. If
k is the current time step, t + i − 1 < k means that the trajectory ended at
time t+ i− 1, and t+ i− 1 = k means that the trajectory is ongoing.

As a trajectory (t, x1:i) exists from time step t to t+ i− 1, variable (t+ i)
belongs to the set,

I(k′) = {(t, i) : 0 ≤ t ≤ k′ < ∞ and 1 ≤ i ≤ k′ − t+ 1 < ∞}. (6.1)

A single trajectory X up to a finite time step k′ therefore belongs to the space

Tk′ = ⊎(t,i)∈I(k′)
{t} × Xi, (6.2)

where Xi represents i Cartesian products of the single object state space X.
Given a real-valued function p(·) on the single trajectory space T(k′), its inte-
gral is ∫

p(X)dX =
∑

(t,i)∈I(k′)

∫
p
(
t, x1:i) dx1:i, (6.3)

where single trajectory density p(t, x1:i) can be factorized as

p(t, x1:i) = p(x1:i|t, i)P (t, i). (6.4)

This integral goes through all possible start times, lengths, and object states
of the trajectory.

Multiple trajectories

A set of trajectories up to a finite time step k′ is denoted by X ∈ F(T(k′))
where F(T(k′)) is the set of all finite subsets of T(k′). Given a trajectory
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6.1 Sets of trajectories

X = (t, x1:i), the set of the object state at time step k is

τk(X) =
{

{xk+1−t} if t ≤ k ≤ t+ i− 1
∅ otherwise.

(6.5)

A trajectory X is present at time step k if and only if |τk(X)| = 1. Given a
set X of trajectories, the set τk(X) of object states at time step k is

τk(X) =
⋃

X∈X
τk(X). (6.6)

The number of trajectories present at time k is given by |τk(X)|.
Given a real-valued function f(·) on the space F(T(k′)) of sets of trajectories,

its set integral is∫
f(X)δX =

∞∑
n=0

1
n!

∫
f ({X1, . . . , Xn}) dX1:n, (6.7)

where X1:n = (X1, . . . , Xn). If f(·) is a multi-trajectory density, then f(·) ≥ 0
and its set integral is one.

Multi-trajectory processes are analogous to multi-object processes for sets
of object. A trajectory Poisson RFS has density

f(X) = e−
∫

λ(X)dX
∏

X∈X
λ(X), (6.8)

where the trajectory Poisson intensity λ(·) is defined on the trajectory state
space, i.e. realizations of the Poisson RFS are trajectories with a birth time,
a length, and a state sequence. A trajectory Bernoulli RFS has density

f(X) =


1 − r if X = ∅
rp(X) if X = {X}
0 otherwise.

(6.9)

where p(·) is a trajectory state density and r is the Bernoulli probability
of existence. A trajectory MB is the disjoint union of multiple trajectory
Bernoulli RFSs; trajectory MBM RFS is an RFS whose density is a mixture
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of trajectory MB densities.

Problem formulation

There are many ways in which an MOT problem can be formulated depending
on the application at hand. In this thesis, the following two variants are
considered:

• The set of current trajectories: the objective is to estimate the trajecto-
ries of the objects that are present in the surveillance area at the current
time.

• The set of all trajectories: the objective is to estimate the trajectories of
all objects that have passed through the surveillance area at some point
between time step 0 and the current time step, i.e. both the objects that
are present in the surveillance area at the current time, and the objects
that have left the surveillance area (but were in the surveillance area at
least one previous time).

Depending on the problem formulation, the variable that we are interested in
is different. For the set of current trajectories, Xk is the set of trajectories
for which t + i − 1 = k. For the set of all trajectories, Xk is the set of
trajectories for which t + i − 1 ≤ k. It is also possible to consider other
problem formulations, e.g. where we are interested in trajectories in one time
interval while conditioning on measurements in a different time interval [82].

With the set of trajectories Xk as variables of interest in MOT, the Bayesian
filtering recursions are

p (Xk|z1:k−1) =
∫
π (Xk|Xk−1) p (Xk−1|z1:k−1) δXk−1, (6.10)

p (Xk|z1:k) = g (zk|Xk) p (Xk|z1:k−1)∫
g (zk|Yk) p (Yk|z1:k−1) δYk

, (6.11)

where π(Xk|Xk−1) and g(zk|Xk) are multi-object dynamic and measurement
models for sets of trajectories, defined analogously to their counterparts for
sets of objects in Chapter 4. See [34] for details.
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6.2 PMBMs for sets of trajectories
This section introduces the PMBM conjugate prior for sets of trajectories
[36], [38], [82], [83]. The PMBM multi-trajectory density PMBMk|k(Xk) is
a conjugate prior to the standard multi-object models with Poisson birth:

PMBMk|k−1 (Xk) =
∫
π (Xk|Xk−1) PMBMk−1|k−1 (Xk−1) δXk−1,

(6.12)

PMBMk|k (Xk) =
g (zk|Xk) PMBMk|k−1 (Xk)∫
g (zk|Yk) PMBMk|k−1 (Yk) δYk

. (6.13)

In a PMBM multi-trajectory density, the trajectory Poisson RFS models tra-
jectories of the set of undetected objects, whereas the trajectory MBM RFS
models trajectories of objects that have been detected (in one of the observed
measurement sets). In a trajectory MBM, each Bernoulli RFS models a single
potential trajectory given a sequence of associations, an MB RFS models a
set of detected trajectories for a global hypothesis, and the weights of MBs
are the estimated probability of the corresponding associations.

A trajectory Poisson/Bernoulli RFS density can be marginalized to the cur-
rent time step to obtain an object Poisson/Bernoulli RFS density. Therefore,
marginalizing a PMBM set of trajectories density gives a PMBM set of object
states density. The trajectory PMBM filter is an MOT algorithm based on the
PMBM conjugate prior for sets of trajectories; see [36], [83] for explicit equa-
tions and implementation details. The relation between a trajectory PMBM
filter and an object PMBM filter is illustrated in Figure 6.1. Two key insights
are: 1) in an object PMBM filter the object state history is marginalized out in
every prediction step, and 2) in an trajectory PMBM filter information about
the past object states is maintained such that trajectories can be estimated
directly from the posterior.

6.3 Metric on the space of sets of trajectories
A metric for sets of trajectories based on multidimensional assignments was
proposed in [84]. This metric penalizes localization costs for properly detected
objects, misdetections, false detections and track switches. Let ΠX,Y be the
set of all possible assignment vectors between the index sets {1. . . . , |X|} and
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𝒫ℳℬℳk|k−1(xk) 𝒫ℳℬℳk|k(xk) 𝒫ℳℬℳk+1|k(xk+1)

Trajectory filter Trajectory filter

Predict

Update Predict

Object filter Object filter

Marginalization Marginalization Marginalization

Figure 6.1: Trajectory PMBM filter versus object PMBM filter.

{0, . . . , |Y|}. An assignment vector πk = [πk
1 , . . . , π

k
|X|]T at time step k is a

vector πk ∈ {0, . . . , |Y|}nX such that its ith component πk
i = πk

i′ = j > 0
implies that i = i′. Here πk

i = j ̸= 0 implies that trajectory i in X is assigned
to trajectory j in Y at time step k and πk

i = 0 implies that trajectory i in X
is unassigned at time step k.

For 1 ≤ p < ∞, cut-off parameter c > 0, switching penalty γ > 0 and a base
metric db(·, ·) in the single object space X, the multidimensional assignment
metric d(c,γ)

p (X,Y) between two sets X and Y of trajectories in time interval
1, . . . , T is

d(c,γ)
p (X,Y) = min

πk∈ΠX,Y

(
T∑

k=1
dk

X,Y
(
X,Y, πk

)p +
T −1∑
k=1

sX,Y
(
πk, πk+1)p

) 1
p

,

(6.14)
where the costs (to the p-th power) for properly detected objects, misdetec-
tions and false detections at time step k are

dk
X,Y

(
X,Y, πk

)p =
∑

(i,j)∈θk(πk)

d
(
τk(Xi), τk(Yj)

)p

+ cp

2
(∣∣τk(X)

∣∣+
∣∣τk(Y)

∣∣− 2
∣∣θk
(
πk
)∣∣) , (6.15)

with

θk
(
πk
)

=
{(
i, πk

i

)
: i ∈ {1, . . . , nX} ,

|τk(Xi)| =
∣∣∣τk(Yπk

i
)
∣∣∣ = 1, d

(
τk(Xi), τk(Yπk

i
)
)
< c
}
, (6.16)
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and the switching cost (to the p-th power) from time step k to k + 1 is given
by

sX,Y(πk, πk+1)p = γp

|X|∑
i=1

s
(
πk

i , π
k+1
i

)
, (6.17)

s
(
πk

i , π
k+1
i

)
=


0 if πk

i = πk+1
i

1 if πk
i ̸= πk+1

i , πk
i ̸= 0, πk+1

i ̸= 0
1
2 otherwise.

(6.18)

It should be noted that, for (i, j) ∈ θk, τk(Xi) and τk(Yπk
i
) contain precisely

one element and their distance is smaller than c, so d
(
τk(Xi), τk(Yj)

)
coin-

cides with db(·, ·) evaluated at the corresponding single object states, which
corresponds to the localization error. Therefore, (6.15) represents the sum of
the costs (to the pth power) that correspond to localization error for properly
detected objects (indicated by the assignments in θk(πk)), number of misde-
tections (|τk(X)| − |θk(πk)|) and false detections (|τk(Y)| − |θk(πk)|) at time
step k.

The metric (6.14) can be computed by solving a multidimensional assign-
ment problem, which may be computationally heavy for large T . It was further
shown in [84] that an accurate lower bound on the metric (6.14) can be ob-
tained using linear programming, which can be computed in polynomial time.
Note that this lower bound is also a metric. In addition, the metric (6.14)
can be extended by including weights to the costs associated to different time
steps [85].
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CHAPTER 7

Summary of included papers

This chapter provides a summary of the included papers.

7.1 Paper A
Yuxuan Xia, Karl Granström, Lennart Svensson,
Ángel F. García-Fernández, Jason L. Williams
Multi-scan implementation of the trajectory Poisson multi-Bernoulli mix-
ture filter
Published in Journal of Advances in Information Fusion,
vol. 14, no. 2, pp. 213–235, December 2019,
©2019 ISIF ISSN: 1557-6418 .

The Poisson multi-Bernoulli mixture (PMBM) and the multi-Bernoulli mix-
ture (MBM) are two multi-target distributions for which closed-form filtering
recursions exist. The PMBM has a Poisson birth process, whereas the MBM
has a multi-Bernoulli birth process. This paper considers a recently developed
formulation of the multi-target tracking problem using a random finite set of
trajectories, through which the track continuity is explicitly established. A
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multi-scan trajectory PMBM filter and a multi-scan trajectory MBM filter,
with the ability to correct past data association decisions to improve current
decisions, are presented. In addition, a multi-scan trajectory MBM01 filter,
in which the existence probabilities of all Bernoulli components are either 0
or 1, is given. This paper proposes an efficient implementation that performs
track-oriented N -scan pruning to limit the computational complexity, and
uses dual decomposition to solve the involved multi-frame assignment prob-
lem. The performance of the presented multi-target trackers, applied with an
efficient fixed-lag smoothing method, is evaluated in a simulation study.

7.2 Paper B
Yuxuan Xia, Lennart Svensson, Ángel F. García-Fernández,
Jason L. Williams, Daniel Svensson, and Karl Granström
Multiple object trajectory estimation using backward simulation
Published in IEEE Transactions on Signal Processing,
vol. 70, pp. 3249–3263, Jun. 2022.
©2022 IEEE ISSN: 1941-0476 .

This paper presents a general solution for computing the multi-object pos-
terior for sets of trajectories from a sequence of multi-object (unlabelled) fil-
tering densities and a multi-object dynamic model. Importantly, the proposed
solution opens an avenue of trajectory estimation possibilities for multi-object
filters that do not explicitly estimate trajectories. In this paper, we first derive
a general multi-trajectory backward smoothing equation based on random fi-
nite sets of trajectories. Then we show how to sample sets of trajectories using
backward simulation for Poisson multi-Bernoulli filtering densities and develop
a tractable implementation based on ranked assignment. The performance of
the resulting multi-trajectory particle smoothers is evaluated in a simulation
study, and the results demonstrate that they have superior performance in
comparison to several state-of-the-art multi-object filters and smoothers.

7.3 Paper C
Yuxuan Xia, Karl Granström, Lennart Svensson,
Maryam Fatemi, Ángel F. García-Fernández, Jason L. Williams
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7.4 Paper D

Poisson multi-Bernoulli approximations for multiple extended object fil-
tering
Published in IEEE Transactions on Aerospace and Electronic Systems,
vol. 58, no. 2, pp. 890–906, Apr. 2022.
©2022 IEEE ISSN: 1557-9603 .

The Poisson multi-Bernoulli mixture (PMBM) is a multi-object conjugate
prior for the closed-form Bayes random finite set filter. The extended object
PMBM filter provides a closed-form solution for multiple extended object fil-
tering with standard models. This article considers computationally lighter
alternatives to the extended object PMBM filter by propagating a Poisson
multi-Bernoulli (PMB) density through the filtering recursion. A new lo-
cal hypothesis representation is presented, where each measurement creates
a new Bernoulli component. This facilitates the development of methods for
efficiently approximating the PMBM posterior density after the update step
as a PMB. Based on the new hypothesis representation, two approximation
methods are presented: one is based on the track-oriented multi-Bernoulli
(MB) approximation, and the other is based on the variational MB approxi-
mation via Kullback-Leibler divergence minimization. The performance of the
proposed PMB filters with gamma Gaussian inverse-Wishart implementations
are evaluated in a simulation study.

7.4 Paper D
Yuxuan Xia, Ángel F. García-Fernández, Florian Meyer,
Jason L. Williams, Karl Granström, and Lennart Svensson
Trajectory PMB filters for extended object tracking using belief propa-
gation
Pre-print is available at https://arxiv.org/abs/2207.10164. .

In this paper, we propose a Poisson multi-Bernoulli (PMB) filter for ex-
tended object tracking (EOT), which directly estimates the set of object tra-
jectories, using belief propagation (BP). The proposed filter propagates a PMB
density on the posterior of sets of trajectories through the filtering recursions
over time, where the PMB mixture (PMBM) posterior after the update step is
approximated as a PMB. The efficient PMB approximation relies on several
important theoretical contributions. First, we present a PMBM conjugate
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prior on the posterior of the sets of trajectories for a generalized measurement
model, in which each object generates an independent set of measurements.
The PMBM density is a conjugate prior in the sense that both the prediction
and the update steps preserve the PMBM form of the density. Second, we
present a factor graph representation of the joint posterior of the PMBM set
of trajectories and association variables for the Poisson spatial measurement
model. Importantly, leveraging the PMBM conjugacy and the factor graph
formulation enables an elegant treatment of undetected objects via a Poisson
point process and efficient inference on sets of trajectories using BP, where the
approximate marginal densities in the PMB approximation can be obtained
without enumeration of different data association hypotheses. To achieve
this, we present a particle-based implementation of the proposed filter, where
smoothed trajectory estimates, if desired, can be obtained via single-object
particle smoothing methods, and its performance for EOT with ellipsoidal
shapes is evaluated in a simulation study.
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CHAPTER 8

Concluding Remarks and Future Work

This thesis studies Bayesian object tracking problems for both point and ex-
tended objects with a focus on MOT based on sets of trajectories. The con-
cluding remarks and possible future work directions of the included papers
are given as follows:

• Paper A: “Multi-scan implementations of the trajectory Pois-
son multi-Bernoulli mixture filter”
This paper shows that multi-scan data association algorithms used in
classical track-oriented MHT can be utilized in trajectory filters based
on multi-object conjugate priors, resulting in the multi-scan implemen-
tations of the trajectory filters. Interesting future work is to benchmark
the multi-scan trajectory filters against efficient track-oriented MHT al-
gorithms in the literature. It would also be interesting to continue the
development of more efficient optimization algorithms for solving the
multi-scan data association problem.

• Paper B: “Multiple object trajectory estimation using back-
ward simulation”
This paper presents a general forward-backward smoothing equation for
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sets of trajectories and proposed a multi-trajectory particle smoother
using backward simulation for PMB filtering densities along with a
tractable implementation based on ranked assignment. Interesting fu-
ture work is to consider a one-time-step lagged implementation of the
multi-trajectory smoother, such that trajectories can be built upon the
computation of multi-object filtering densities. It is also valuable to de-
velop an implementation that works for forward densities with particle
representation.

• Paper C: “Poisson multi-Bernoulli approximations for multiple
extended object filtering”
This paper presents an extended object PMB filter, which propagates
a PMB density through the filtering recursion, as a computationally
lighter alternative to the extended object PMBM filter. Two different
PMB approximation methods are presented: one is based on the track-
oriented MB approximation, and the other is based on variational MB
approximation via KLD minimization. It would be valuable to develop
different extended object PMB implementations with different object
spatial models and verify their performance on real data.

• Paper D: “Trajectory PMB filters for extended object tracking
using belief propagation ”
This paper presents a PMBM conjugate prior on the posterior of sets
of trajectories for a generalized measurement model, and a factor graph
representation of the joint posterior of the PMBM set of trajectories and
association variables for the Poisson spatial measurement model. Based
on these theoretical contributions, two TPMB filters for multiple EOT
implementation using particle BP are presented: one estimates the set
of alive trajectories, and the other estimates the set of all trajectories.
For future work, it would be interesting to study how to make use of
variational MB approximation to facilitate track initialization. It is also
worth investigating how to extend BP for EOT to consider multi-scan
data associations and tracking co-existing point and extended objects.

In recent years, deep learning has been increasingly used in MOT for im-
proving tracking performance using camera [86], lidar [87] and radar [88]. In
addition, recent works [89], [90] show that a deep learning based MOT method
can match or outperform the performance of the state-of-the-art model-based
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Bayesian MOT methods in the model-based setting for point object tracking,
in terms of GOSPA and an uncertainty aware performance measure based on
negative log-likelihood [91]. Furthermore, a hybrid method for model-based
and deep learning based MOT has been recently proposed in [92] using neural
enhanced BP. Therefore, it would be interesting to explore how to improve the
performance of model-based MOT methods using deep learning techniques as
well as how to leverage techniques in model-based MOT methods in designing
deep neural network architectures for MOT.
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