634 research outputs found

    Temporal Cross-Media Retrieval with Soft-Smoothing

    Full text link
    Multimedia information have strong temporal correlations that shape the way modalities co-occur over time. In this paper we study the dynamic nature of multimedia and social-media information, where the temporal dimension emerges as a strong source of evidence for learning the temporal correlations across visual and textual modalities. So far, cross-media retrieval models, explored the correlations between different modalities (e.g. text and image) to learn a common subspace, in which semantically similar instances lie in the same neighbourhood. Building on such knowledge, we propose a novel temporal cross-media neural architecture, that departs from standard cross-media methods, by explicitly accounting for the temporal dimension through temporal subspace learning. The model is softly-constrained with temporal and inter-modality constraints that guide the new subspace learning task by favouring temporal correlations between semantically similar and temporally close instances. Experiments on three distinct datasets show that accounting for time turns out to be important for cross-media retrieval. Namely, the proposed method outperforms a set of baselines on the task of temporal cross-media retrieval, demonstrating its effectiveness for performing temporal subspace learning.Comment: To appear in ACM MM 201

    Identifying Retweetable Tweets with a Personalized Global Classifier

    Full text link
    In this paper we present a method to identify tweets that a user may find interesting enough to retweet. The method is based on a global, but personalized classifier, which is trained on data from several users, represented in terms of user-specific features. Thus, the method is trained on a sufficient volume of data, while also being able to make personalized decisions, i.e., the same post received by two different users may lead to different classification decisions. Experimenting with a collection of approx.\ 130K tweets received by 122 journalists, we train a logistic regression classifier, using a wide variety of features: the content of each tweet, its novelty, its text similarity to tweets previously posted or retweeted by the recipient or sender of the tweet, the network influence of the author and sender, and their past interactions. Our system obtains F1 approx. 0.9 using only 10 features and 5K training instances.Comment: This is a long paper version of the extended abstract titled "A Personalized Global Filter To Predict Retweets", of the same authors, which was published in the 25th ACM UMAP conference in Bratislava, Slovakia, in July 201

    Extracting News Events from Microblogs

    Full text link
    Twitter stream has become a large source of information for many people, but the magnitude of tweets and the noisy nature of its content have made harvesting the knowledge from Twitter a challenging task for researchers for a long time. Aiming at overcoming some of the main challenges of extracting the hidden information from tweet streams, this work proposes a new approach for real-time detection of news events from the Twitter stream. We divide our approach into three steps. The first step is to use a neural network or deep learning to detect news-relevant tweets from the stream. The second step is to apply a novel streaming data clustering algorithm to the detected news tweets to form news events. The third and final step is to rank the detected events based on the size of the event clusters and growth speed of the tweet frequencies. We evaluate the proposed system on a large, publicly available corpus of annotated news events from Twitter. As part of the evaluation, we compare our approach with a related state-of-the-art solution. Overall, our experiments and user-based evaluation show that our approach on detecting current (real) news events delivers a state-of-the-art performance

    Node Embedding over Temporal Graphs

    Full text link
    In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient

    LEARNING WORD RELATEDNESS OVER TIME FOR TEMPORAL RANKING

    Get PDF
    Queries and ranking with temporal aspects gain significant attention in field of Information Retrieval. While searching for articles published over time, the relevant documents usually occur in certain temporal patterns. Given a query that is implicitly time sensitive, we develop a temporal ranking using the important times of query by drawing from the distribution of query trend relatedness over time. We also combine the model with Dual Embedding Space Model (DESM) in the temporal model according to document timestamp. We apply our model using three temporal word embeddings algorithms to learn relatedness of words from news archive in Bahasa Indonesia: (1) QT-W2V-Rank using Word2Vec (2) QT-OW2V-Rank using OrthoTrans-Word2Vec (3) QT-DBE-Rank using Dynamic Bernoulli Embeddings. The highest score was achieved with static word embeddings learned separately over time, called QT-W2V-Rank, which is 66% in average precision and 68% in early precision. Furthermore, studies of different characteristics of temporal topics showed that QT-W2V-Rank is also more effective in capturing temporal patterns such as spikes, periodicity, and seasonality than the baselines

    Creator Context for Tweet Recommendation

    Full text link
    When discussing a tweet, people usually not only refer to the content it delivers, but also to the person behind the tweet. In other words, grounding the interpretation of the tweet in the context of its creator plays an important role in deciphering the true intent and the importance of the tweet. In this paper, we attempt to answer the question of how creator context should be used to advance tweet understanding. Specifically, we investigate the usefulness of different types of creator context, and examine different model structures for incorporating creator context in tweet modeling. We evaluate our tweet understanding models on a practical use case -- recommending relevant tweets to news articles. This use case already exists in popular news apps, and can also serve as a useful assistive tool for journalists. We discover that creator context is essential for tweet understanding, and can improve application metrics by a large margin. However, we also observe that not all creator contexts are equal. Creator context can be time sensitive and noisy. Careful creator context selection and deliberate model structure design play an important role in creator context effectiveness
    • …
    corecore