20 research outputs found

    Meta Soft Label Generation for Noisy Labels

    Full text link
    The existence of noisy labels in the dataset causes significant performance degradation for deep neural networks (DNNs). To address this problem, we propose a Meta Soft Label Generation algorithm called MSLG, which can jointly generate soft labels using meta-learning techniques and learn DNN parameters in an end-to-end fashion. Our approach adapts the meta-learning paradigm to estimate optimal label distribution by checking gradient directions on both noisy training data and noise-free meta-data. In order to iteratively update soft labels, meta-gradient descent step is performed on estimated labels, which would minimize the loss of noise-free meta samples. In each iteration, the base classifier is trained on estimated meta labels. MSLG is model-agnostic and can be added on top of any existing model at hand with ease. We performed extensive experiments on CIFAR10, Clothing1M and Food101N datasets. Results show that our approach outperforms other state-of-the-art methods by a large margin.Comment: Accepted by ICPR 202

    Decoupling Representation and Classifier for Noisy Label Learning

    Full text link
    Since convolutional neural networks (ConvNets) can easily memorize noisy labels, which are ubiquitous in visual classification tasks, it has been a great challenge to train ConvNets against them robustly. Various solutions, e.g., sample selection, label correction, and robustifying loss functions, have been proposed for this challenge, and most of them stick to the end-to-end training of the representation (feature extractor) and classifier. In this paper, by a deep rethinking and careful re-examining on learning behaviors of the representation and classifier, we discover that the representation is much more fragile in the presence of noisy labels than the classifier. Thus, we are motivated to design a new method, i.e., REED, to leverage above discoveries to learn from noisy labels robustly. The proposed method contains three stages, i.e., obtaining the representation by self-supervised learning without any labels, transferring the noisy label learning problem into a semisupervised one by the classifier directly and reliably trained with noisy labels, and joint semi-supervised retraining of both the representation and classifier. Extensive experiments are performed on both synthetic and real benchmark datasets. Results demonstrate that the proposed method can beat the state-of-the-art ones by a large margin, especially under high noise level

    PI-GNN: A Novel Perspective on Semi-Supervised Node Classification against Noisy Labels

    Full text link
    Semi-supervised node classification, as a fundamental problem in graph learning, leverages unlabeled nodes along with a small portion of labeled nodes for training. Existing methods rely heavily on high-quality labels, which, however, are expensive to obtain in real-world applications since certain noises are inevitably involved during the labeling process. It hence poses an unavoidable challenge for the learning algorithm to generalize well. In this paper, we propose a novel robust learning objective dubbed pairwise interactions (PI) for the model, such as Graph Neural Network (GNN) to combat noisy labels. Unlike classic robust training approaches that operate on the pointwise interactions between node and class label pairs, PI explicitly forces the embeddings for node pairs that hold a positive PI label to be close to each other, which can be applied to both labeled and unlabeled nodes. We design several instantiations for PI labels based on the graph structure and the node class labels, and further propose a new uncertainty-aware training technique to mitigate the negative effect of the sub-optimal PI labels. Extensive experiments on different datasets and GNN architectures demonstrate the effectiveness of PI, yielding a promising improvement over the state-of-the-art methods.Comment: 16 pages, 3 figure
    corecore