3 research outputs found

    On Symbiosis of Attribute Prediction and Semantic Segmentation

    Full text link
    In this paper, we propose to employ semantic segmentation to improve person-related attribute prediction. The core idea lies in the fact that the probability of an attribute to appear in an image is far from being uniform in the spatial domain. We build our attribute prediction model jointly with a deep semantic segmentation network. This harnesses the localization cues learned by the semantic segmentation to guide the attention of the attribute prediction to the regions where different attributes naturally show up. Therefore, in addition to prediction, we are able to localize the attributes despite merely having access to image-level labels (weak supervision) during training. We first propose semantic segmentation-based pooling and gating, respectively denoted as SSP and SSG. In the former, the estimated segmentation masks are used to pool the final activations of the attribute prediction network, from multiple semantically homogeneous regions. In SSG, the same idea is applied to the intermediate layers of the network. SSP and SSG, while effective, impose heavy memory utilization since each channel of the activations is pooled/gated with all the semantic segmentation masks. To circumvent this, we propose Symbiotic Augmentation (SA), where we learn only one mask per activation channel. SA allows the model to either pick one, or combine (weighted superposition) multiple semantic maps, in order to generate the proper mask for each channel. SA simultaneously applies the same mechanism to the reverse problem by leveraging output logits of attribute prediction to guide the semantic segmentation task. We evaluate our proposed methods for facial attributes on CelebA and LFWA datasets, while benchmarking WIDER Attribute and Berkeley Attributes of People for whole body attributes. Our proposed methods achieve superior results compared to the previous works.Comment: Accepted for publication in PAMI. arXiv admin note: substantial text overlap with arXiv:1704.0874

    Deep face tracking and parsing in the wild

    Get PDF
    Face analysis has been a long-standing research direction in the field of computer vision and pattern recognition. A complete face analysis system involves solving several tasks including face detection, face tracking, face parsing, and face recognition. Recently, the performance of methods in all tasks has significantly improved thanks to the employment of Deep Convolutional Neural Networks (DCNNs). However, existing face analysis algorithms mainly focus on solving facial images captured in the constrained laboratory environment, and their performance on real-world images has remained less explored. Compared with the lab environment, the in-the-wild settings involve greater diversity in face sizes, poses, facial expressions, background clutters, lighting conditions and imaging quality. This thesis investigates two fundamental tasks in face analysis under in-the-wild settings: face tracking and face parsing. Both tasks serve as important prerequisites for downstream face analysis applications. However, in-the-wild datasets remain scarce in both fields and models have not been rigorously evaluated in such settings. In this thesis, we aim to bridge that gap of lacking in-the-wild data, evaluate existing methods in these settings, and develop accurate, robust and efficient deep learning-based methods for the two tasks. For face tracking in the wild, we introduce the first in-the-wild face tracking dataset, MobiFace, that consists of 80 videos captured by mobile phones during mobile live-streaming. The environment of the live-streaming performance is fully unconstrained and the interactions between users and mobile phones are natural and spontaneous. Next, we evaluate existing tracking methods, including generic object trackers and dedicated face trackers. The results show that MobiFace represent unique challenges in face tracking in the wild and cannot be readily solved by existing methods. Finally, we present a DCNN-based framework, FT-RCNN, that significantly outperforms other methods in face tracking in the wild. For face parsing in the wild, we introduce the first large-scale in-the-wild face dataset, iBugMask, that contains 21, 866 training images and 1, 000 testing images. Unlike existing datasets, the images in iBugMask are captured in the fully unconstrained environment and are not cropped or preprocessed of any kind. Manually annotated per-pixel labels for eleven facial regions are provided for each target face. Next, we benchmark existing parsing methods and the results show that iBugMask is extremely challenging for all methods. By rigorous benchmarking, we observe that the pre-processing of facial images with bounding boxes in face parsing in the wild introduces bias. When cropping the face with a bounding box, a cropping margin has to be hand-picked. If face alignment is used, fiducial landmarks are required and a predefined alignment template has to be selected. These additional hyper-parameters have to be carefully considered and can have a significant impact on the face parsing performance. To solve this, we propose Region-of-Interest (RoI) Tanh-polar transform that warps the whole image to a fixed-sized representation. Moreover, the RoI Tanh-polar transform is differentiable and allows for rotation equivariance in 1 DCNNs. We show that when coupled with a simple Fully Convolutional Network, our RoI Tanh-polar transformer Network has achieved state-of-the-art results on face parsing in the wild. This thesis contributes towards in-the-wild face tracking and face parsing by providing novel datasets and proposing effective frameworks. Both tasks can benefit real-world downstream applications such as facial age estimation, facial expression recognition and lip-reading. The proposed RoI Tanh-polar transform also provides a new perspective in how to preprocess the face images and make the DCNNs truly end-to-end for real-world face analysis applications.Open Acces

    Describing Images by Semantic Modeling using Attributes and Tags

    Get PDF
    This dissertation addresses the problem of describing images using visual attributes and textual tags, a fundamental task that narrows down the semantic gap between the visual reasoning of humans and machines. Automatic image annotation assigns relevant textual tags to the images. In this dissertation, we propose a query-specific formulation based on Weighted Multi-view Non-negative Matrix Factorization to perform automatic image annotation. Our proposed technique seamlessly adapt to the changes in training data, naturally solves the problem of feature fusion and handles the challenge of the rare tags. Unlike tags, attributes are category-agnostic, hence their combination models an exponential number of semantic labels. Motivated by the fact that most attributes describe local properties, we propose exploiting localization cues, through semantic parsing of human face and body to improve person-related attribute prediction. We also demonstrate that image-level attribute labels can be effectively used as weak supervision for the task of semantic segmentation. Next, we analyze the Selfie images by utilizing tags and attributes. We collect the first large-scale Selfie dataset and annotate it with different attributes covering characteristics such as gender, age, race, facial gestures, and hairstyle. We then study the popularity and sentiments of the selfies given an estimated appearance of various semantic concepts. In brief, we automatically infer what makes a good selfie. Despite its extensive usage, the deep learning literature falls short in understanding the characteristics and behavior of the Batch Normalization. We conclude this dissertation by providing a fresh view, in light of information geometry and Fisher kernels to why the batch normalization works. We propose Mixture Normalization that disentangles modes of variation in the underlying distribution of the layer outputs and confirm that it effectively accelerates training of different batch-normalized architectures including Inception-V3, Densely Connected Networks, and Deep Convolutional Generative Adversarial Networks while achieving better generalization error
    corecore