6,172 research outputs found

    AFFIRM: Affinity Fusion-based Framework for Iteratively Random Motion correction of multi-slice fetal brain MRI

    Full text link
    Multi-slice magnetic resonance images of the fetal brain are usually contaminated by severe and arbitrary fetal and maternal motion. Hence, stable and robust motion correction is necessary to reconstruct high-resolution 3D fetal brain volume for clinical diagnosis and quantitative analysis. However, the conventional registration-based correction has a limited capture range and is insufficient for detecting relatively large motions. Here, we present a novel Affinity Fusion-based Framework for Iteratively Random Motion (AFFIRM) correction of the multi-slice fetal brain MRI. It learns the sequential motion from multiple stacks of slices and integrates the features between 2D slices and reconstructed 3D volume using affinity fusion, which resembles the iterations between slice-to-volume registration and volumetric reconstruction in the regular pipeline. The method accurately estimates the motion regardless of brain orientations and outperforms other state-of-the-art learning-based methods on the simulated motion-corrupted data, with a 48.4% reduction of mean absolute error for rotation and 61.3% for displacement. We then incorporated AFFIRM into the multi-resolution slice-to-volume registration and tested it on the real-world fetal MRI scans at different gestation stages. The results indicated that adding AFFIRM to the conventional pipeline improved the success rate of fetal brain super-resolution reconstruction from 77.2% to 91.9%

    Application of Advanced MRI to Fetal Medicine and Surgery

    Get PDF
    Robust imaging is essential for comprehensive preoperative evaluation, prognostication, and surgical planning in the field of fetal medicine and surgery. This is a challenging task given the small fetal size and increased fetal and maternal motion which affect MRI spatial resolution. This thesis explores the clinical applicability of post-acquisition processing using MRI advances such as super-resolution reconstruction (SRR) to generate optimal 3D isotropic volumes of anatomical structures by mitigating unpredictable fetal and maternal motion artefact. It paves the way for automated robust and accurate rapid segmentation of the fetal brain. This enables a hierarchical analysis of volume, followed by a local surface-based shape analysis (joint spectral matching) using mathematical markers (curvedness, shape index) that infer gyrification. This allows for more precise, quantitative measurements, and calculation of longitudinal correspondences of cortical brain development. I explore the potential of these MRI advances in three clinical settings: fetal brain development in the context of fetal surgery for spina bifida, airway assessment in fetal tracheolaryngeal obstruction, and the placental-myometrial-bladder interface in placenta accreta spectrum (PAS). For the fetal brain, MRI advances demonstrated an understanding of the impact of intervention on cortical development which may improve fetal candidate selection, neurocognitive prognostication, and parental counselling. This is of critical importance given that spina bifida fetal surgery is now a clinical reality and is routinely being performed globally. For the fetal trachea, SRR can provide improved anatomical information to better select those pregnancies where an EXIT procedure is required to enable the fetal airway to be secured in a timely manner. This would improve maternal and fetal morbidity outcomes associated with haemorrhage and hypoxic brain injury. Similarly, in PAS, SRR may assist surgical planning by providing enhanced anatomical assessment and prediction for adverse peri-operative maternal outcome such as bladder injury, catastrophic obstetric haemorrhage and maternal death

    Efficient multi-class fetal brain segmentation in high resolution MRI reconstructions with noisy labels

    Full text link
    Segmentation of the developing fetal brain is an important step in quantitative analyses. However, manual segmentation is a very time-consuming task which is prone to error and must be completed by highly specialized indi-viduals. Super-resolution reconstruction of fetal MRI has become standard for processing such data as it improves image quality and resolution. However, dif-ferent pipelines result in slightly different outputs, further complicating the gen-eralization of segmentation methods aiming to segment super-resolution data. Therefore, we propose using transfer learning with noisy multi-class labels to automatically segment high resolution fetal brain MRIs using a single set of seg-mentations created with one reconstruction method and tested for generalizability across other reconstruction methods. Our results show that the network can auto-matically segment fetal brain reconstructions into 7 different tissue types, regard-less of reconstruction method used. Transfer learning offers some advantages when compared to training without pre-initialized weights, but the network trained on clean labels had more accurate segmentations overall. No additional manual segmentations were required. Therefore, the proposed network has the potential to eliminate the need for manual segmentations needed in quantitative analyses of the fetal brain independent of reconstruction method used, offering an unbiased way to quantify normal and pathological neurodevelopment.Comment: Accepted for publication at PIPPI MICCAI 202

    Novel Image Processing Methods for Improved Fetal Brain MRI

    Get PDF
    Fetal magnetic resonance imaging (MRI) has been increasingly used as a powerful complement imaging modality to ultrasound imaging (US) for the clinical evaluation of prenatal abnormalities. Specifically, clinical application of fetal MRI has been significantly improved in the nineties by hardware and software advances with the development of ultrafast multi-slice T2-weighted (T2w) acquisition sequences able to freeze the unpredictable fetal motion and provide excellent soft-tissue contrast. Fetal motion is indeed the major challenge in fetal MRI and slice acquisition time should be kept as short as possible. As a result, typical fetal MRI examination involves the acquisition of a set of orthogonally planned scans of thick two-dimensional slices, largely free of intra-slice motion artifacts. The poor resolution in the slice-select dimension as well as possible motion occurring between slices limits further quantitative data analysis, which is the key for a better understanding of the developing brain but also the key for the determination of operator-independent biomarkers that might significantly facilitate fetal diagnosis and prognosis. To this end, several research groups have developed in the past ten years advanced image processing methods, often denoted by motion-robust super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) scans, a high-resolution (HR) motion-free volume. SR problem is usually modeled as a linear inverse problem describing the imaging degradation due to acquisition and fetal motion. Typically, such approaches consist in iterating between slice motion estimation that estimates the motion parameters and SR that recovers the HR image given the estimated degradation model. This thesis focuses on the development of novel advanced image processing methods, which have enabled the design of a completely automated reconstruction pipeline for fetal MRI. The proposed techniques help in improving state-of-the-art fetal MRI reconstruction in terms of efficiency, robustness and minimized user-interactions, with the ultimate goal of being translated to the clinical environment. The first part focuses on the development of a more efficient Total Variation (TV)-regularized optimization algorithm for the SR problem. The algorithm uses recent advances in convex optimization with a novel adaptive regularization strategy to offer simultaneously fast, accurate and robust solutions to the fetal image recovery problem. Extensive validations on both simulated fetal and real clinical data show the proposed algorithm is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods. The second part focuses on the development of a novel automatic brain localization and extraction approach based on template-to-slice block matching and deformable slice-totemplate registration. Asmost fetal brain MRI reconstruction algorithms rely only on brain tissue-relevant voxels of low-resolution (LR) images to enhance the quality of inter-slice motion correction and image reconstruction, the fetal brain needs to be localized and extracted as a first step. These tasks generally necessitate user interaction, manually or semi-automatically done. Our methods have enabled the design of completely automated reconstruction pipeline that involves intensity normalization, inter-slice motion estimation, and super-resolution. Quantitative evaluation on clinical MRI scans shows that our approach produces brain masks that are very close to manually drawn brain masks, and ratings performed by two expert observers show that the proposed pipeline achieves similar reconstruction quality to reference reconstruction based on manual slice-by-slice brain extraction without any further effort. The third part investigates the possibility of automatic cortical folding quantification, one of the best biomarkers of brain maturation, by combining our automatic reconstruction pipeline with a state-of-the-art fetal brain tissue segmentation method and existing automated tools provided for adult brain’s cortical folding quantification. Results indicate that our reconstruction pipeline can provide HR MR images with sufficient quality that enable the use of surface tessellation and active surface algorithms similar to those developed for adults to extract meaningful information about fetal brain maturation. Finally, the last part presents new methodological improvements of the reconstruction pipeline aiming at improving the quality of the image for quantitative data analysis, whose accuracy is highly dependent on the quality and resolution of the reconstructed image. In particular, it presents a more consistent and global magnetic bias field correction method which takes advantage of the super-resolution framework to provide a final reconstructed image quasi free of the smooth bias field. Then, it presents a new TV SR algorithm that uses the Huber norm in the data fidelity term to be more robust to non-Gaussian outliers. It also presents the design of a novel joint reconstruction-segmentation framework and the development of a novel TV SR algorithm driven by segmentation to produce images with enhanced edge information that could ultimately improve their segmentation. Finally, it preliminary investigates the capability of increasing the resolution in the in-plane dimensions using SR to ultimately reduce the partial volume effect

    PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI

    Get PDF
    In this paper we present a novel method for the correction of motion artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patch-wise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR's computational overhead compared to standard methods and observe improved reconstruction accuracy in presence of affine motion artifacts of approximately 30% compared to conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. With these experiments we demonstrate successful application of PVR motion compensation to the whole uterus, the human fetus, and the human placenta.Comment: 10 pages, 13 figures, submitted to IEEE Transactions on Medical Imaging. v2: wadded funders acknowledgements to preprin

    Real-Time Automatic Fetal Brain Extraction in Fetal MRI by Deep Learning

    Full text link
    Brain segmentation is a fundamental first step in neuroimage analysis. In the case of fetal MRI, it is particularly challenging and important due to the arbitrary orientation of the fetus, organs that surround the fetal head, and intermittent fetal motion. Several promising methods have been proposed but are limited in their performance in challenging cases and in real-time segmentation. We aimed to develop a fully automatic segmentation method that independently segments sections of the fetal brain in 2D fetal MRI slices in real-time. To this end, we developed and evaluated a deep fully convolutional neural network based on 2D U-net and autocontext, and compared it to two alternative fast methods based on 1) a voxelwise fully convolutional network and 2) a method based on SIFT features, random forest and conditional random field. We trained the networks with manual brain masks on 250 stacks of training images, and tested on 17 stacks of normal fetal brain images as well as 18 stacks of extremely challenging cases based on extreme motion, noise, and severely abnormal brain shape. Experimental results show that our U-net approach outperformed the other methods and achieved average Dice metrics of 96.52% and 78.83% in the normal and challenging test sets, respectively. With an unprecedented performance and a test run time of about 1 second, our network can be used to segment the fetal brain in real-time while fetal MRI slices are being acquired. This can enable real-time motion tracking, motion detection, and 3D reconstruction of fetal brain MRI.Comment: This work has been submitted to ISBI 201

    Predicting Slice-to-Volume Transformation in Presence of Arbitrary Subject Motion

    Full text link
    This paper aims to solve a fundamental problem in intensity-based 2D/3D registration, which concerns the limited capture range and need for very good initialization of state-of-the-art image registration methods. We propose a regression approach that learns to predict rotation and translations of arbitrary 2D image slices from 3D volumes, with respect to a learned canonical atlas co-ordinate system. To this end, we utilize Convolutional Neural Networks (CNNs) to learn the highly complex regression function that maps 2D image slices into their correct position and orientation in 3D space. Our approach is attractive in challenging imaging scenarios, where significant subject motion complicates reconstruction performance of 3D volumes from 2D slice data. We extensively evaluate the effectiveness of our approach quantitatively on simulated MRI brain data with extreme random motion. We further demonstrate qualitative results on fetal MRI where our method is integrated into a full reconstruction and motion compensation pipeline. With our CNN regression approach we obtain an average prediction error of 7mm on simulated data, and convincing reconstruction quality of images of very young fetuses where previous methods fail. We further discuss applications to Computed Tomography and X-ray projections. Our approach is a general solution to the 2D/3D initialization problem. It is computationally efficient, with prediction times per slice of a few milliseconds, making it suitable for real-time scenarios.Comment: 8 pages, 4 figures, 6 pages supplemental material, currently under review for MICCAI 201
    corecore