6 research outputs found

    A Dataset on Malicious Paper Bidding in Peer Review

    Full text link
    In conference peer review, reviewers are often asked to provide "bids" on each submitted paper that express their interest in reviewing that paper. A paper assignment algorithm then uses these bids (along with other data) to compute a high-quality assignment of reviewers to papers. However, this process has been exploited by malicious reviewers who strategically bid in order to unethically manipulate the paper assignment, crucially undermining the peer review process. For example, these reviewers may aim to get assigned to a friend's paper as part of a quid-pro-quo deal. A critical impediment towards creating and evaluating methods to mitigate this issue is the lack of any publicly-available data on malicious paper bidding. In this work, we collect and publicly release a novel dataset to fill this gap, collected from a mock conference activity where participants were instructed to bid either honestly or maliciously. We further provide a descriptive analysis of the bidding behavior, including our categorization of different strategies employed by participants. Finally, we evaluate the ability of each strategy to manipulate the assignment, and also evaluate the performance of some simple algorithms meant to detect malicious bidding. The performance of these detection algorithms can be taken as a baseline for future research on detecting malicious bidding

    Counterfactual Evaluation of Peer-Review Assignment Policies

    Full text link
    Peer review assignment algorithms aim to match research papers to suitable expert reviewers, working to maximize the quality of the resulting reviews. A key challenge in designing effective assignment policies is evaluating how changes to the assignment algorithm map to changes in review quality. In this work, we leverage recently proposed policies that introduce randomness in peer-review assignment--in order to mitigate fraud--as a valuable opportunity to evaluate counterfactual assignment policies. Specifically, we exploit how such randomized assignments provide a positive probability of observing the reviews of many assignment policies of interest. To address challenges in applying standard off-policy evaluation methods, such as violations of positivity, we introduce novel methods for partial identification based on monotonicity and Lipschitz smoothness assumptions for the mapping between reviewer-paper covariates and outcomes. We apply our methods to peer-review data from two computer science venues: the TPDP'21 workshop (95 papers and 35 reviewers) and the AAAI'22 conference (8,450 papers and 3,145 reviewers). We consider estimates of (i) the effect on review quality when changing weights in the assignment algorithm, e.g., weighting reviewers' bids vs. textual similarity (between the review's past papers and the submission), and (ii) the "cost of randomization", capturing the difference in expected quality between the perturbed and unperturbed optimal match. We find that placing higher weight on text similarity results in higher review quality and that introducing randomization in the reviewer-paper assignment only marginally reduces the review quality. Our methods for partial identification may be of independent interest, while our off-policy approach can likely find use evaluating a broad class of algorithmic matching systems

    PeerNomination : a novel peer selection algorithm to handle strategic and noisy assessments

    Get PDF
    In peer selection a group of agents must choose a subset of themselves, as winners for, e.g., peer-reviewed grants or prizes. We take a Condorcet view of this aggregation problem, assuming that there is an objective ground-truth ordering over the agents. We study agents that have a noisy perception of this ground truth and give assessments that, even when truthful, can be inaccurate. Our goal is to select the best set of agents according to the underlying ground truth by looking at the potentially unreliable assessments of the peers. Besides being potentially unreliable, we also allow agents to be self-interested, attempting to influence the outcome of the decision in their favour. Hence, we are focused on tackling the problem of impartial (or strategyproof) peer selection -- how do we prevent agents from manipulating their reviews while still selecting the most deserving individuals, all in the presence of noisy evaluations? We propose a novel impartial peer selection algorithm, PeerNomination, that aims to fulfil the above desiderata. We provide a comprehensive theoretical analysis of the recall of PeerNomination and prove various properties, including impartiality and monotonicity. We also provide empirical results based on computer simulations to show its effectiveness compared to the state-of-the-art impartial peer selection algorithms. We then investigate the robustness of PeerNomination to various levels of noise in the reviews. In order to maintain good performance under such conditions, we extend PeerNomination by using weights for reviewers which, informally, capture some notion of reliability of the reviewer. We show, theoretically, that the new algorithm preserves strategyproofness and, empirically, that the weights help identify the noisy reviewers and hence to increase selection performance
    corecore