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In peer selection a group of agents must choose a subset of themselves, as winners for, e.g., 
peer-reviewed grants or prizes. We take a Condorcet view of this aggregation problem, 
assuming that there is an objective ground-truth ordering over the agents. We study 
agents that have a noisy perception of this ground truth and give assessments that, even 
when truthful, can be inaccurate. Our goal is to select the best set of agents according 
to the underlying ground truth by looking at the potentially unreliable assessments of 
the peers. Besides being potentially unreliable, we also allow agents to be self-interested, 
attempting to influence the outcome of the decision in their favour. Hence, we are 
focused on tackling the problem of impartial (or strategyproof) peer selection – how do we 
prevent agents from manipulating their reviews while still selecting the most deserving 
individuals, all in the presence of noisy evaluations? We propose a novel impartial peer 
selection algorithm, PeerNomination, that aims to fulfil the above desiderata. We provide 
a comprehensive theoretical analysis of the recall of PeerNomination and prove various 
properties, including impartiality and monotonicity. We also provide empirical results 
based on computer simulations to show its effectiveness compared to the state-of-the-art 
impartial peer selection algorithms. We then investigate the robustness of PeerNomination

to various levels of noise in the reviews. In order to maintain good performance under such 
conditions, we extend PeerNomination by using weights for reviewers which, informally, 
capture some notion of reliability of the reviewer. We show, theoretically, that the new 
algorithm preserves strategyproofness and, empirically, that the weights help identify the 
noisy reviewers and hence to increase selection performance.1
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1. Introduction

Peer evaluation and selection, where agents rate others and then choose a subset of themselves for an award or a prize, 
is one of the pillars for quality assessment in scientific contexts and beyond. While many of the current methods rely on 
expert panels, ideally impartial to the selection process [7,42], there is increasing need for alternative mechanisms that 
keep the procedure both reliable and cheap. An important approach to achieve this goal is that of using the agents that 
have submitted proposals for review as the set of reviewers themselves. This is particularly relevant in open online courses 
[37], where hiring professional graders is prohibitively expensive. Indeed, even large AI venues such as IJCAI and NeurIPS 
have been implementing a portion of this system, requiring authors who submit papers to agree to be the reviewers of 
other papers.

The importance of improving peer reviewing procedures has been brought to light by the 2014 NeurIPS experiment 
[24,43]: of all papers submitted to NeurIPS 2014, 10% were reviewed twice by two independent committees which, aston-
ishingly, agreed on less than half of the accepted papers. Whether the outcome was due to bias, incompetence, or rather 
well-thought disagreement is still unclear. What had been made clear, however, is that the current solutions seem to suffer 
from undesirable features. The exploding number of papers at AI and general computer science venues has spurred interest 
in improving many aspects of the peer review process, including: assignment biases [32,25,19], review quality [48], reviewer 
training [46], and even the quality of reviewers’ discussions (see overview by Shah [42]). Other studies of bias in evalua-
tive processes have also brought to the fore the extent and impact of inaccurate assessments in peer reviewing, for example 
[49,45]. Finding high quality mechanisms for peer review is a critical step in helping the review process in large conferences 
[4], grant reviewing [33], online courses [47], and other domains.

Researchers in algorithmic game theory and computational social choice worked on the peer selection problem for at 
least the past decade, focusing on accurate and strategyproof algorithms, including Partition [1], Credible Subset [23] and 
ExactDollarPartition (EDP) [4]; we provide an overview of these algorithms and more in Section 3. All of these algorithms 
take a Condorcet view on this aggregation problem, i.e., that there exists an a-priori ground-truth ranking of the agents, 
and we wish to select as many of the top ranked agents as possible, though given only access to the agents’ own noisy 
reports [52]. While this raises obvious philosophical challenges – e.g., what does this ground truth represent if we cannot 
have direct access to it? – we follow this view as it allows for quantitative analysis of the performance of peer selection 
algorithms, and hence their objective comparison.

Many of the existing algorithms we survey in Section 3 highlight the trade-offs forced by the pursuit of the dual goal 
of impartiality and optimality. Some require the set of reviewing agents to be partitioned into clusters that do not review 
each other [4]; while others sacrifice exactness – the ability to select a given number of agents consistently [23]. With 
PeerNomination, the algorithm presented in this paper, we also sacrifice exactness, but we are able to achieve a new 
state-of-the-art performance. Additionally, none of the existing algorithms seek to alleviate the problem of noisy inputs in 
a unified, strategyproof mechanism. When earlier work did engage with noisy reports, it was limited to empirical testing 
with relatively low noise, e.g., a Mallows model with ϕ = 0.5 [4], which yields fairly minor changes in agents’ reports (as 
will be shown in Section 2.3). We are instead concerned with algorithms that can handle a significant level of noise, while 
maintaining strategyproofness and high quality of selection, an important missing aspect in the literature.

Ideally, we would like an algorithm that is capable of identifying inaccurate reviewers and reducing their influence on 
the final selection, using only the agents’ reports themselves as a guide. We could, for example, try and downgrade those 
reviewers that differ too much from others. However, there are two problems with this approach: first, the noise may be 
such that it is difficult to establish what the consensus actually is; and second, that this meta-level reweighting can be 
exploited strategically. Simple reweighting is not strategyproof: consider, for example, an agent a that is harshly reviewing 
agent b, with both a and b reviewing a third agent c. Agent b could benefit by reviewing agent c in a way that would present 
agent a as an unreliable agent, lowering the impact of the report of agent a for agent b if weights are computed based on 
correlations to the evaluations of others, e.g., as done by Merrifield and Saari [33]. On the other hand, if a mechanism is 
able to identify agent b as a source of noise, it can increase the overall quality of the selection. While one can reweight 
agents without maintaining strategyproofness [47,51], we wish to achieve increased selection quality and strategyproofness. 
The algorithm we present in this paper is able to achieve both of these tasks with state of the art performance.

1.1. Contribution

We present PeerNomination, an impartial (or strategyproof) peer selection method for scenarios where n agents re-
view and are each reviewed by m others, with the goal of selecting k of them. Each proposal,2 which we identify with 
the proposing agent, is considered independently and it is selected only if it falls in the top k

n m of the majority of its 
reviewers’ (partial) rankings, using a probabilistic completion if such number is not an integer. Performing the selection in-
dependently relaxes the exactness requirement, hence our algorithm is not guaranteed to select exactly k agents every time. 
However, under some mild assumptions, the algorithm does select exactly k agents in expectation. Unlike other well-known 

2 For the sake of clarity, when an agent is referred to as a reviewer we will always mean in the context of reviewing others and we will use the word 
proposal when referring to an agent that is being reviewed.
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peer reviewing methods, e.g., ExactDollarPartition (EDP), PeerNomination does not rely on clustering nor on reviewers 
submitting complete rankings, allowing more flexibility in where and when it may be deployed.

We compare the performance of PeerNomination against an underlying ground truth ranking, when agent rank-
ings are drawn according to a Mallows Model [28,52], deriving its expected recall analytically.3 Furthermore, we extend 
PeerNomination to make use of reviewer weights in order to handle noisy and inaccurate agents. To do so, we explicitly 
formulate (reliability) weights on reviewers in a way that does not violate strategyproofness, and use this information to 
reweight their scores. PeerNomination with weights is able to handle high levels of noise, even when reviewers act adver-
sarially. We show analytically that weighting schemes can improve the overall quality of the selection significantly.

Finally, we empirically compare our method against other peer selection mechanisms, for which analytic performance 
bounds are unknown, using a number of well-known classification measures. Our results show that PeerNomination im-
proves on the current best performance in terms of recall known from the literature and relies on milder assumptions on 
the underlying reviewer graph. This suggests that relaxing the exactness requirement in peer selection outcomes can give 
us an improved quality of the accepted set. Moreover, we show empirically that PeerNomination with weights is able to 
significantly improve the quality of peer selection of PeerNomination without weights, under a variety of noise parameters.

Paper outline. In Section 2, we provide formal definitions of the problem and all the concepts required to describe the 
algorithm precisely, as well as a description of the noise model used for empirical testing. In Section 3 we detail a number of 
previously proposed algorithms for peer selection and what sets our method apart. Section 4 introduces PeerNomination in 
detail together with its different weighting schemes and an assignment procedure. We then use Section 5 to derive analytic 
results about PeerNomination such as strategyproofness and expected recall. Finally, in Section 6, we put PeerNomination

up to the test against a state-of-the-art strategyproof peer selection algorithm, EDP [4], to measure its performance in a 
realistic setting.

2. Preliminaries

Agents and ground truth. In the peer selection problem, agents are represented by the set of positive integers N =
{1, 2, ..., n}. As is common in the peer reviewing literature and consistent with a Condorcet theory of voting [52], we 
assume that there is a ground truth that all agents share, which we define as a linear order over N . In other words, we 
make the simplifying assumption that, if agents were to assess each other accurately, they would report the same ranking.4

To provide a more general and realistic setup, we use a noise model that gives each agent a distorted view of this ground 
truth. Assuming noisy reviewers requires a more nuanced notion of truthfulness, i.e., each agent being true to their own 
potentially faulty perception.

In general, the peer review process consists of three steps: (1) the assignment of proposals to be reviewed by each 
agent; (2) the submission of reviews by the reviewing agents; (3) the aggregation of the submitted reviews. We formalise 
each of these steps next, focusing on the notions needed to study our PeerNomination algorithm. Adopting the academic 
peer review terminology, we will refer to agents as reviewers in the context of them giving reviews and as proposals in the 
context of being reviewed.

Review assignment. In peer reviewing, agents are assigned to review each others’ work. A desirable stipulation for the review 
assignment is that no agent should review themselves. We also typically expect each agent to review a similar number of 
proposals and all proposals to receive a similar number of reviews.

Formally, a review assignment is a function A : N → 2N such that for any i ∈N , i /∈ A(i). This gives each reviewer i a set 
of proposals to evaluate, A(i), which we call a reviewer’s bundle. For our peer selection procedure we often need to refer to 
the set of agents assigned to review a particular proposal j. Slightly abusing notation, we denote all reviewers of proposal 
j by A−1( j) = {i ∈N | j ∈ A(i)}; we call this a proposal’s panel. Given an integer m, an assignment is called m-regular if for 
any i ∈N , |A(i)| = |A−1(i)| = m.

In practice, m tends to be small and constant with respect to n, representing the assumption that each reviewer has 
limited reviewing capacity. This makes m-regular assignments desirable, as they distribute the workload evenly. For this 
reason and to simplify theoretical analysis, we will assume all our assignments are m-regular for the rest of the paper. Note 
that this assumption is not needed for our algorithm to work.

In some settings, such as conference peer review, we may wish to view the assignment in light of agent bids [25], sim-
ilarity scores [12,32], or some other measure of assignment quality as done by Xu et al. [53]. In our work, much like is 
done at the US National Science Foundation [33] or would be done in a peer review classroom setting [16], we assume 

3 As we explain in detail in Section 6.1, in this paper we use the binary classification definition of recall to measure performance. Recall is calculated as 
the proportion of all positives selected by the algorithm. This is the same measure as used in Aziz et al. [4] and other peer selection literature, where it is 
usually referred to as accuracy. We decide to use the term recall to avoid confusion since accuracy has a distinct definition as a classification measure.

4 This assumption is often too simplistic and does not account for the diversity of views which are common in scientific debates. It should be thought 
of as an idealisation of those scientific communities where methodological debates or epistemic views are not at the heart of the discussion and where 
participants agree on the objective value of a proposal, subject to its careful examination. From the technical point view this is a standard assumption in 
Condorcet views of voting [52] and allows for easy theoretical and empirical analysis of the performance of peer selection algorithms.
3
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Fig. 1. A peer review assignment. The ground truth ranking over the agents is given by the agent number with agent 1 being the best and agent 5 being 
the worst, i.e., 1 � 2 � 3 � 4 � 5.

that the assignment is independent of the ground truth ranking. An interesting direction for future work would incorpo-
rate PeerNomination into a larger framework with more assumptions over the information available to the assignment 
algorithm. However, in this paper we do not make such assumptions.

Agents’ reviews. We assume that the reviewers’ evaluations are represented by a rank ordering over their bundle. Given an 
m-regular review assignment A, agent i reports a ranking as a bijection σi : A(i) → {1, ..., m}. A ranking is called truthful if 
it is consistent with the (perceived) ground truth. In a setting without noise, a truthful ranking is therefore a ranking that is 
consistent with the ground truth, which is accessed by everyone. In a setting with noise, more generally, a truthful ranking 
is a ranking that is consistent with the agent’s individual perception of it given by the noise model. The collection of all 
rankings is called a profile is denoted by σ = (σ1, ..., σn). A truthful profile is then a profile of truthful rankings. The set of 
all possible profiles, truthful or not, is denoted by �.

Most peer selection algorithms use the rankings provided by the reviewers directly, e.g., ExactDollarPartition. However, 
coming up with full rankings typically poses a higher cognitive load on reviewers and increases the chance of inaccurate 
assessments. Additionally, in some settings, such as in student peer evaluation of assignments as discussed by De Alfaro and 
Shavlovsky [16], agents may outright refuse to provide partial or complete rankings, preferring instead to indicate that work 
is acceptable or not only.

In contrast, our algorithm takes inspiration from approval voting, and does not require the full ranking to be submitted, 
but rather a set of approved agents. As common with approval voting [9], voters simply give a “yes” or a “no” to each 
candidate, potentially subject to a quota. We call these approvals nominations. We expand on this idea by allowing non-
integer quotas with the non-integer part representing partial nomination.

Given an m-regular review assignment A and a quota q > 0, a nomination vector from agent i is a function σ i : A(i) →
{0, 1, q − �q�} such that |σ−1

i (1)| = �q� and |σ−1
i (q − �q�)| = 1. In other words, reviewers simply submit enough nomina-

tions to fill up their quota and choose one additional nomination to be partial. Under our proposed algorithm, this partial 
nomination will be resolved probabilistically.

Example 1. The directed graph in Fig. 1 represents a 2-regular assignment on n = 5 agents with no noise, where the ground 
truth ranking over the agents is: 1 � 2 � 3 � 4 � 5. For example, agent 1 is reviewing agents 3 and 5, their review bundle, 
and their ranking is consistent with the ground truth that 3 is above 5. If the nomination quota was 1, the truthful strategy 
of agent 1 would nominate 3 and leave 5 out. If, instead, the nomination quota was increased to 1.2, agent 1 will have to 
employ partial nominations. Their truthful strategy is then to nominate agent 3 fully and agent 5 partially.

Example 1 shows the use of partial nominations, which will constitute a backbone of our main algorithm. Under 
PeerNomination, a partial nomination quota would directly translate to a probability of being nominated.

Aggregation. The final step of the process is to aggregate the rankings and select a set of winners. Typically, there is a 
specified number of winners, k. However, some mechanisms forgo this requirement and return either a possibly smaller set 
of winners [3] or possibly no winners [23]. Formally, given a review assignment A, a profile σ ∈ � and an integer k ≤ n, a 
peer selection mechanism is a function f : � → 2N . The mechanism is called exact if for every σ ∈ �, | f (σ )| = k.

Example 2. Let us now go back to Example 1 and focus on a nomination quota of 1. If every agent submits a truthful 
ranking, then the proposals would receive 2, 2, 1, 0, 0 nominations, respectively. Assume that the target number of winners 
is k = 2. If all agents were truthful, we would select agent 1 and 2. However, note that agent 3 can untruthfully nominate 
agent 4 instead of agent 1, giving the following nomination distribution: 1, 2, 1, 1, 0; which makes agent 3 tie for second 
place with agents 1 and 4. If we were to select uniformly at random, agent 3 would increase their chance of selection from 
0 to 1

3 by manipulating their review, thus keeping k = 2 agents as the winners but violating strategyproofness (as defined 
in Section 2.2).
4
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Fig. 2. When using first-order weights, the weight of reviewer i is only affected by all rankings received by their bundle, j1, j2, j3 (green arrows), but not 
by any other rankings in the system (red arrows). Hence, reviewers that are part of the same panels as i, such as i′ and i′′ , can affect their weight. On the 
contrary, reviewers outside of i’s panels, such as i∗ , bear no effect on wi . (For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

An alternative approach would be to select all agents that have, say, one nomination. This way agent 3 is accepted 
regardless of who they nominate (if we required 2 nominations, agent 3 would not be selected independent of their review). 
This approach is strategyproof, however it comes at the cost of exactness – we select three agents instead of two.

Example 2 shows that aggregation protocols may not satisfy all desirable properties, in particular strategyproofness and 
exactness. In this paper we develop an algorithm that relaxes exactness to achieve strategyproofness. However, we also 
show that, under mild assumptions, exactness is guaranteed in expectation. We shall see that, in noisier scenarios, the 
employment of weighting schemes will be helpful to discriminate inaccurate reviewers and empirically achieve the higher 
recall.

2.1. Weighting schemes

Peer selection often takes place in the presence of noise of various types, e.g., reviewer bias and/or submitting short or 
hastily prepared reviews [42], but also in the presence of legitimately different evaluations of the quality of proposals. Hence, 
we desire algorithms that are able to work in situations of high noise, where agents may have an inaccurate assessment of 
the other agents but the algorithms are not so strict as to stifle dissenting viewpoints. In order to still provide a reasonable 
outcome, we will employ weighting schemes to mitigate as much noise as possible. These schemes assign weights to every 
agent based on the reviews they give to reflect how much (or little) they agree with other reviewers.

A weighting scheme is a function w : � → [0, 1]n . When the review profile σ is obvious from the context, we denote 
the reviewer weight of agent i by wi . A weighting scheme is first-order if for every i, wi depends only on the comparative 
rankings of the panels of which i is a part. More formally, wi only depends on the rankings 

⋃
j∈A(i){σk | j ∈ A(k)}. Thus, 

reviewer i can only influence the weights of their co-panelists – those reviewers that are on the same panel as i – as 
illustrated in Fig. 2. We also require our weighting schemes to be deterministic to preserve a form of neutrality: if the input 
to the weighting scheme is the same for two reviewers, their weights should be the same.

Notice how Google PageRank [36,22], for example, uses weights that are not first-order, as the influence of a ranking is 
propagated through the system indefinitely. This would be detrimental to our algorithm since a change in a single ranking, 
e.g., an attempt at strategising, would propagate through most, if not all, reviewer weights, thereby making it very hard to 
ensure strategyproofness. For this reason, we use only first-order weighting schemes in PeerNomination.

2.2. Properties

Since each agent wants their own proposal to be selected, the incentives of self-interested agents in the peer selection 
problem do not always align with the socially optimal outcome – the selection of the best k agents according to the ground 
5
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Fig. 3. Typical number of errors, i.e., nominations of proposals not actually in the top k
n m of the ground truth ordering, committed by a reviewer who has 

to nominate 3 out of 9 proposals as a function of the dispersion parameter.

truth. A peer selection algorithm f is called strategyproof or impartial if for every agent i, whenever i ∈ f (σ ) for some 
profile σ , then also i ∈ f ((σ1, ..., σ ∗

i , ..., σn)) where σ ∗
i is truthful. In other words, deviating from truthful reporting can 

never be beneficial for any agent. In the probabilistic context, we require agents not being able to increase their probability 
of being selected.

In addition to strategyproofness, we will show that our mechanism, like most, maintains the properties of anonymity, 
i.e., permuting agents makes no difference; non-imposition, i.e., any set of k accepted papers is a possible output; and 
monotonicity, i.e., receiving better scores does not decrease the probability of selection.

2.3. Noise model

To model the inaccuracies in reviewers’ assessments, we assume that each agent is associated with a noisy observation of 
the ground truth according to a Mallows model [28]. Mallows models have been widely used to compare the performance of 
peer selection algorithms empirically [29,4], but so far only studied for very mild levels of noise which do not significantly 
affect the reported rankings.

The Mallows model is parameterised by a dispersion parameter ϕ ∈ [0, 1] and a reference linear ranking R . Given R and 
ϕ , the model induces a probability distribution over all permutations of R such that the probability of the linear order R ′
is πR,φ(R ′) ∝ ϕK T (R,R ′) , where K T (R, R ′) is the Kendall-τ distance between R and R ′ . The Kendall-τ distance counts the 
number of pairwise disagreements between two rankings [21]. Hence, the probability of an agent reporting an additional 
pairwise disagreement from the reference ranking decreases exponentially. Note that, as we vary the dispersion parameter 
ϕ from 0 to 1, the probability distribution over all linear rankings moves from being concentrated at R to being uniform 
over all possible rankings. In our simulations (Section 6), we take the ground truth as the reference ranking and sample a 
noisy ranking for each agent using the ϕ specified. An important feature of the Mallows model is that it can be sampled 
efficiently [27,52,30], which allows us to generate a unique reviewer profile for each experiment.

In addition, we test our weighting schemes in settings where some reviewers are not just random, but are actively 
contrarian to the ground truth. Since the Mallows model only produces random rankings in the worst case (at ϕ = 1), we 
introduce a simple extension in which agents may tend against the ground truth. Formally, given a reference ranking R
and a dispersion parameter ϕ ∈ (1, 2], the extended Mallows model samples a ranking R ′ with probability πR−1,(2−φ)(R ′) ∝
(2 − ϕ)K T (R−1,R ′) , where R−1 is the reverse of the linear order R .

For example, if we set ϕ = 1.2, we assume the agent has the reverse ground truth as the reference ranking and sam-
ples a ranking using Mallows model with ϕ = 0.8. Thus, the distribution moves smoothly from being concentrated at the 
ground truth towards the reverse ground truth, while still being uniform around 1. It is worth noting that the Mallows 
model behaves non-linearly with respect to the number of errors committed by the reviewer. In our setup, the number of 
errors, i.e., the proposals nominated that fall outside of the top k

m n of the ground truth, is illustrated by Fig. 3. Unless the 
dispersion parameter is close to 1, reviewers commit very few errors on average. Moreover, a significant probability to get 
all 3 nominations wrong only arises when we consider ϕ > 1 following our contrarian extension.

3. Related work

Using the evaluations of peers to rank and select winners is a problem of broad interest beyond CS and AI, including 
numerous practical domains, e.g., conference, journal, and grant reviewing; large scale course grading, and group decision 
making. Brought to the fore by Merrifield and Saari [33] to allocate telescope time for the US National Science Foundation, 
the problem is deeply rooted in economics, with extensive work on the continuous case (see de Clippel et al. [14]), in which 
6
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agents allocate fractions of rewards (discrete variants of which – Dollar Raffle and Dollar Partition were suggested by Aziz 
et al. [4]). In the discrete case there has been interest in the AI community from the work of Alon et al. [1] on partition 
and onwards. Later, the Credible Subset method [23], where the mechanism examines the possibility of manipulations and 
accounts for it, was suggested. Despite strategyproofness, the system in inexact (can return no selection), and it was shown 
that this can happen in a significant number of cases [3]. A prominent recent algorithm is ExactDollarPartition (EDP) 
[4], which provides exactness at the cost of some randomness, while remaining strategyproof, and improving on the main 
earlier algorithms.

A study by Caragiannis et al. [11] provides optimal (non-impartial) algorithms for ordinal peer ranking in a setting 
that is close to the one considered in this paper. In particular, they show that the simple Borda mechanism is optimal 
in the setting with no noise; they also provide a way to construct an optimal algorithm for a specific Mallows-like noise 
model. This provides a good benchmark for testing impartial peer selection algorithms. For example, the results from Mattei 
et al. [29] show that unweighted PeerNomination approaches the recall of Borda in some settings.

Similar algorithms from the multi-agent systems communities include voting rules to aggregate ranks, e.g., k-Partite [20], 
the Committee Rule [20], and Divide-and-Rank [53] algorithms. Others focus on proving bounds on the quality of a given 
rank aggregation scheme under noisy and partial observations [10]. Yet other methods are approval-based but focus on 
single agent selection: Permutation [17] and Slicing [8].

A key application area for peer evaluation mechanisms is education, where the problems of reviewer reliability and bias 
have been extensively studied [38]. We are motivated by evidence from fielded peer evaluation mechanisms showing that 
students are often unwilling to strictly rank assignments [16] and would rather rely on scores or pass/fail marks (approvals). 
Within the conference and journal reviewing ecosystem there is also growing interest in detecting strategic behaviour on 
the part of the reviewers [45,32] as well as de-biasing and calibrating differences in the scores of reviewers [48,25]. We 
go beyond calibration and de-biasing, identifying suboptimal behaviour in agents’ populations and looking at the effect of 
rescaling on the system as a whole.

Outside peer selection, there is extensive work in the machine learning, information retrieval, and preference learning 
communities on the learning to rank problem: inferring the most likely ranking from possibly noisy observations [26]. These 
works include learning noise models, e.g., the parameters of a Mallows model, for use in inferring latent preferences of 
agents [26,52]. This is of great practical interest in information retrieval, where one wishes to rank, e.g., web-pages based 
on user clicks [41] and in combining labelling from multiple sources for the construction of datasets [51]. However, all of 
these systems do not concern themselves with strategyproofness, a key focus of our study.

The notion of weights is used elsewhere in computer systems applications, for example in the field of recommender 
systems, where “reviewers”, i.e., the customers, might have an incentive to submit untruthful ratings [39]; a similar approach 
is also taken in reputation system [40] and other platforms such as Google Search in the form of the PageRank algorithm 
[36,22].

4. PEERNOMINATION

In this section we formally present PeerNomination, including the design and implementation of our reweighting mech-
anism. We then discuss the trade-offs that arise in the mechanism due to the introduction of these weights. Finally, we 
present specific examples of some weighting schemes that may be used in PeerNomination. The complete PeerNomination

algorithm is given as Algorithm 1.

4.1. The PeerNomination algorithm

A usual requirement for a peer selection mechanisms is that it must return a set exactly of size k [4,1,20]. Some ap-
proaches investigated relaxing this assumption [3,23], most notably, Bjelde et al. [6] show that this relaxation can lead to 
better approximation of the optimal selection of winners. We use the intuition that relaxing the exactness requirement can 
improve recall in PeerNomination, which returns a winning set of size approximately k in expectation.

PeerNomination works as follows: suppose every agent reviews and is reviewed by m other agents. If an agent is in 
the true top k, i.e., the a-priori ground truth, of the overall n agents, we expect them to be ranked in the top k proportion, 
i.e., top k

n m, of their review bundle by the majority of agents that review the proposal, if the reviewing agents were to 
report their rankings perfectly. We say that an agent is nominated by a reviewer if they are in the top k

n proportion of the 
reviewer’s declared ranking, i.e., their review bundle. We hence refer to k

n m as the nomination quota.

As k
n m is unlikely to be an integer, we consider a proposal nominated for certain if it is among the top � k

n m� proposals 
in a particular review bundle, where �x� denotes the whole part of a positive real number x. If a proposal is in the next 
position, i.e., � k

n m� + 1, we consider the proposal nominated with probability k
n m − � k

n m�, that is, the decimal part of the 
nomination quota. For an illustration, see Fig. 4.

We now use the reviewers’ nominations induced by their rankings to select the winners. As discussed above, we first 
use a weighting scheme to compute reviewer weights for each of the reviewers, with the aim to detect inaccurate reviewers 
and assign them a lower weight. We do this by measuring how much the reviewer disagrees with their co-panellists, i.e., 
how consistent a particular reviewer’s ranking is with the agents reviewing the same proposal. We then compare them to 
7
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Fig. 4. Each reviewer nominates their quota of agents.

Algorithm 1 PeerNomination.
Input: Assignment A, review profile σ , target quota k, slack parameter ε, reviewer weights {w1, ..., wn}
Output: Accepting set S

1: Set nomQuota := k
n m + ε

2: for all j in N do
3: Initialise nomCount := 0
4: for all i ∈ A−1( j) do � Count how many nominations j received
5: if σi( j) ≤ �nomQuota� then
6: increment nomCount by wi

7: else if σi( j) = �nomQuota� + 1 then
8: increment nomCount by wi with probability nomQuota − �nomQuota�
9: end if

10: end for
11: if nomCount ≥ (

∑
i∈A−1( j) wi)/2 then

12: S ← j � Select j if they have a weighted majority
13: end if
14: end for
15: return S

a

c

b

a

c

e

b

d

f

Fig. 5. A non-strategyproof assignment (Left) and a strategyproof one (Right). Algorithm 2 only returns the latter type.

the Unit weighing scheme in which wi = 1 for all agents, i.e., all agents have identical weights. The weighting schemes are 
discussed in detail in Section 4.3.

The final stage of PeerNomination consists in selecting a proposal as a winner if it achieves a weighted majority of 
nominations. In the Unit case, this translates to a majority of reviewers nominating it. A crucial observation is that, since 
each proposal is considered independently for selection, the algorithm is not guaranteed to return exactly k agents. However, 
we will show that the algorithm will select a set of size approximately k if the reviewers submit reviews that are close 
enough to the ground truth. We will show, moreover, that with PeerNomination truth-telling is an equilibrium outcome, 
i.e., PeerNomination is strategyproof.

The full PeerNomination algorithm is presented in Algorithm 1. Note that in the algorithm we introduce the slack 
parameter, ε, as part of the input, which extends the nomination quota and serves to fine-tune the algorithm performance. 
As we will discuss in Section 5.2, this is necessary in some settings to achieve the expected size of k of the winning set.

4.2. Review assignment

One of our goals will be to show that PeerNomination is strategyproof (or impartial), which we do in Theorem 1. How-
ever, while this is fairly straightforward for the non-weighted (Unit) case, the introduction of weighting schemes requires 
some care, as illustrated by the following example.

Example 3. Consider the example in Fig. 5 (Left), where agents a, b, c are reviewing each other, with the arrows directed 
from the reviewer to the reviewed proposal. Note how agent a and b are both reviewing agent c. In this scenario, agent b
may impact the weight given to agent a by manipulating their evaluation of agent c. For example, if agent b expects agent 
a to nominate c, they can choose not to nominate c, “discrediting” a. Hence, b may influence agent a’s role in determining 
if agent b themself is selected.
8
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Algorithm 2 Euler-Based Assignment. For simplicity, we present the algorithm for an even n. This is done without loss of 
generality. If n is odd, we can add a dummy agent and run the algorithm on n + 1 agents and m + 1 assignments. We can 
then remove the dummy agent, leaving each degree between m and m + 1.
Input: Set of n agents, review number m ≤ n/4

Output: Anti-transitive m-regular assignment A
1: Initialise G = (V , E) with V := [n], E := ∅
2: Partition V into X and Y such that |X| = |Y | = n/2

3: for all x in X do � Make a 2m-regular bipartite graph G(V,E)
4: for all i in 1, ..., 2m do
5: y∗ ← arg miny{deg(y) | y ∈ Y }
6: E ← E ∪ {{x, y∗}}
7: end for
8: end for
9: Set eulerCycle := HierholzersAlgorithm(G) � Use Hierholzer’s alg. to find an Euler cycle

10: Set A := ([n], E A), E A := ∅
11: for all (vi, vi+1) in eulerCycle do
12: E A ← E A ∪ {(vi, vi+1)} � Orient the edges in the direction of the Euler
13: end for
14: return A

The example shows that there are cases where the mechanism is not strategyproof. We will show below that some 
review assignments can avoid this. We henceforth refer to a review assignment that avoids the construction in Fig. 5 anti-
transitive. Formally, a review assignment is anti-transitive if for any agents a, b, c, if a reviews b and b reviews c, then a
does not review c.

We now present an algorithm for generating random anti-transitive review assignments and show in Section 5.1 that 
this algorithm is correct (Proposition 1) and that anti-transitivity makes PeerNomination strategyproof (Theorem 1).

Algorithm 2 works as follows: it first randomly partitions all agents into 2 equally sized sets and creates a 2m-regular 
bipartite graph based on this partition. It then orients the edges by traversing an Euler tour through the graph (Fig. 5
(Right)), which yields an m-regular directed graph. Notice that Algorithm 2 and Algorithm 1 do not depend on one another 
and can be studied in isolation.

4.3. Weighting schemes

In this section we present three weighting schemes, in addition to the Unit weighting scheme, that can be used to 
evaluate the reliability of the reviewers. Each of these weighting schemes satisfies the first order requirement described 
in Section 2.1. Informally, since each of these weighting schemes only propagates information through one link of the 
review graph, they each will ensure that PeerNomination remains strategyproof under the assignment generated using 
Algorithm 2. The first two contain an “aggressiveness” parameter, which allows us to fine-tune by how much we wish to 
lower the weights of reviewers the scheme identifies as problematic.

While there are other weighting schemes we may consider, such as ones based on expectation maximisation (EM) algo-
rithms including GLAD [50], Dawid-Skene [15], and even PageRank [36,22], all of these methods do not satisfy the first-order 
requirement and would render PeerNomination not strategyproof when using those weighting schemes. For this reason, we 
do not consider these methods in our paper as our focus is on strategyproof methodologies, though exploring the loss of 
recall for strategyproof versus non-strategyproof methods is an interesting direction for future work.

Distance Distance weights are the distance between an agent’s review and those of other reviewers. This distance is calcu-
lated by averaging the individual differences between the reviewers – when one nominated a proposal and another did 
not. Formally, the average distance of reviewer i to other reviewers is di = 1

m2

∑
j∈A(i)

∑
l∈A−1( j) |σ( j) − σ l( j)|. Then the 

distance weight is wdist
i = (1 − di)

γ , where γ is the aggressiveness parameter that exaggerates the weights for better 
discrimination between the agents. This can be understood as an equivalent of Hamming distance in our framework, 
which is computed between the nominations given by a reviewer and those given by their co-panelists.

Majority Errors Let a nomination of a proposal be an “error” by a reviewer if it is a minority opinion, i.e., if the reviewer 
nominates a proposal which does not have a majority in their panel or does not nominate a proposal with a majority, 
rounding partial nominations to the closest integer. More formally, let

majσj =
{

1, if
∑

i∈A−1( j) σ ( j) ≥ m/2

0, otherwise

be the majority for agent j in profile σ . Then define the number of errors of reviewer i to be errσi = ∑
j∈A(i) 1σ( j)�=majσj

. 

The weight is defined as wmajerr = 1 − δ(errσ /m), where δ is the aggressiveness parameter.
i i

9
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Step Step applies a step function to the error rate errσi /m defined in the Majority scheme, above. We choose two thresholds, 
t1 and t2 such that if the error rate reaches t1, we reduce the weight of the reviewer to 0.5; if the error rate reaches 
t2, we reduce the weight to 0. Additionally, we scale each threshold by the nomination quota as it plays a bigger role in 
error detection than just the size of the review bundle, m. Formally,

wi =

⎧⎪⎨
⎪⎩

1, if errσi /n
k < t1

0.5, if t1 ≤ errσi /n
k < t2

0, otherwise.

Unit We refer to the version of PeerNomination where weights are ignored (i.e., each wi = 1) as Unit PeerNomination.

5. Theoretical analysis

In this section we provide the theoretical analysis of PeerNomination. We first prove that PeerNomination satisfies 
important axiomatic properties, notably strategyproofness. We then derive analytic expressions for the expected recall and 
output size of PeerNomination in the case of Unit weights. Lastly, we provide a motivation for the effectiveness of weighting 
schemes by introducing a simplified model of the peer reviewing setting and showing that detecting inaccurate reviewers 
can improve the recall of peer selection.

5.1. Axiomatic properties

Assigning weights to reviewers based on their reviews introduces further complexity and potential for manipulation, 
as illustrated by Example 3. Thankfully, since we only consider first-order weighting schemes, we only need to introduce 
a simple condition on the review assignment to maintain strategyproofness of PeerNomination. We first show that this 
condition is indeed sufficient and then prove that Algorithm 2 guarantees it. Of course, any other assignment-generating 
algorithm that guarantees this condition will also guarantee strategyproofness of PeerNomination.

Theorem 1. PeerNomination is strategyproof if the review assignment is anti-transitive and the weighing scheme is first-order.

Proof. First, we consider the Unit case, in which each weight is set to 1, independently of the reviews. Under 
PeerNomination, whether an agent is selected depends solely on the reviews they receive from their reviewers; there 
is no interaction with the reviews of others. Since no agent reviews themself, they thus cannot affect the chances of their 
selection.

Now consider the general case, where reviewers are assigned weights based on their nominations. The weights introduce 
an interaction between the agents, and to guarantee strategyproofness we wish to show that one cannot affect the weight 
of the reviewers of their own proposal, thus improving their chances of selection. Assume that the review assignment is 
anti-transitive and the weighing scheme is first-order. Say agent i has a proposal. Since the weighting scheme is first-order, 
agent i can only influence the weights of agent i’s co-panelists and no others. That is, it can only influence the weights 
of an agent j for which there is a proposal � such that both i and j are both reviewing �. But because assignment is 
anti-transitive, no such agent j is also the reviewer of agent i’s proposal. Therefore, no change implemented by i in their 
nominations will influence their chances of being selected. �

We observe that Algorithm 2 is an instance of an assignment that guarantees an anti-transitive assignment and others 
may exist. Indeed, as discussed in Section 2 we assume that we do not have any notions of assignment quality in our work. 
However, an interesting direction for future work would be to investigate how the anti-transitive assignment requirement 
may interact with assignment quality [53].

Proposition 1. Algorithm 2 produces an anti-transitive review assignment.

Proof. We need to show that for all agents i, j, k in a review assignment, if i reviews j and j reviews k, then i does not 
review k.

Consider a review assignment produced by Algorithm 2 and suppose we have agents i, j, k such that i reviews j and j
reviews k. All agents are partitioned into a balanced bipartite graph (X, Y ) at the beginning of the algorithm so, without 
loss of generality, assume i ∈ X . Since the graph remains bipartite throughout the algorithm and the final assignment simply 
orients the edges, we must have j ∈ Y and then k ∈ X .

Hence, both i and k are both in the same part of the graph (namely, X) and so there is no edge between them. In other 
words, i cannot review k. �

We also want the algorithm to be monotonic, that is, having better reviews does not hurt the chances of selection.
10
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Table 1
Review profiles that lead to no agent being selected when the nomination quota is increased.

Reviewer ✓ ✗ ✗ Weight

1 2 3 4 0
2 1 3 4 1
3 1 4 2 1
4 1 2 3 1

(a)

Reviewer ✓ ✓ ✗ Weight

1 2 3 4 0
2 1 3 4 0
3 1 4 2 0
4 1 2 3 0

(b)

Proposition 2. PeerNomination is monotonic.

Proof. Suppose j is reviewed by i and compare the probability of selecting j given the original review of i vs. a modified 
one where j is ranked higher by i. Note that for every i, wi ≥ 0, hence a nomination always has a non-negative impact on 
the proposal. There are three cases:

(i) j was already inside the integer part of the nomination quota in the original ranking or j is still (after modification) 
completely outside of the nomination quota in the modified review. In both cases j was already certain to be nominated 
or not nominated, respectively, by i, hence their probability does not change.

(ii) j moves from being a fractional nominee to being a full nominee increasing the chances of nomination (by 1 − (kq −
�kq�)), hence increasing their chances of selection.

(iii) j moves from being not nominated to being fractionally nominated increasing the chance of nomination (by kq −�kq�), 
hence increasing the chances of selection.

In all cases j’s chances of selection do not decrease, completing the proof. �
Unit PeerNomination is also committee monotonic, that is, increasing the target quota k does not hurt the chances of 

selection for an agent. However, this is no longer true with other weighting schemes.

Proposition 3. PeerNomination with Unit weights is committee monotonic.

Proof. Fix a review assignment and profile, and suppose we increase the target number of agents to select, k. This increases 
the nomination quota of each reviewer and, since the review profile is fixed, each agent’s sum of nominations does not 
decrease. So any previously selected proposal is still selected. �
Proposition 4. PeerNomination is not committee monotonic.

Proof. As a counter-example, we present an instance of a peer-review problem and a weighting scheme. Consider an 
instance given by Table 1, with the objective underlying ground truth 1 � 2 � 3 � 4. Here we have a set of 4 agents, each of 
whom reviews everyone else (i.e., n = 4 and m = 3). We augment PeerNomination with a simple weighting scheme: if the 
reviewer’s nominations are also nominated by all other reviewers, we set their weight to 1; otherwise we set their weight 
to 0. In other words, if there is any disagreement between the reviewers, we discredit all reviewers.

Now suppose k = 4
3 , giving the nomination quota of 1, and that the review profile is given in Table 1a. Reviews are 

accurate, except agent 3 placed agent 4 over 2. As shown in the table, before the reweighting, agent 1 is nominated 3 times 
(in a complete agreement) while agent 2 is nominated once. However, since agent 1 is the only one who nominated agent 
2, their weight is set to 0, effectively nullifying their nomination. Hence, only agent 1 is selected.

Now suppose we extend k to 8
3 , giving the nomination quota of 2, as shown in Table 1b. Now, every reviewer nominates 

2 proposals and, for each reviewer, there is at least 1 proposal that is not nominated by someone else. Hence, according to 
the weighting schemes, each reviewer receives the weight of 0, resulting in no nominations and hence no selection.5 �

In addition, PeerNomination is, trivially, also anonymous (permuting agents does not matter) and satisfies non-imposition, 
i.e., any k proposals can be selected given an appropriate nomination.

5.2. Expected size and slack parameter

In order to understand the interplay between the number of selected agents and the slack parameter, we now derive the 
expected size of the winning set returned by PeerNomination as a function of n, m and k, assuming Unit weights and no 

5 Technically, PeerNomination uses non-strict majority for selection and every agent achieves the selection threshold of 0. However, in the practical 
implementation, we do not select agents who receive 0 nominations.
11
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noise. The expression reached by the proposition below is not, on its face, very insightful. But it will allow us to draw out 
the various parameters and see their effects.

Proposition 5. Assume Unit PeerNomination is run on a peer review instance with parameters n, m, k under the truthful profile and 
no noise. Then the probability of selection for an agent in the ground truth position r is given by

P [accept | R = r] =
m∑

i=�m/2�

(
m

i

)
qi

r(1 − qr)
m−i, (1)

where qr(n, m, k) is the agent’s probability to be nominated by one reviewer:

qr :=
�kq�∑
y=1

P [Y = y | R = r] + (
kq − �kq�

)
P [Y = �kq� + 1 | R = r]. (2)

Proof. Recall that the algorithm is run on an m-regular assignment and we assume reviews are truthful. We also assume 
the assignment is sampled uniformly, and thus each review bundle is equally likely to be assigned to any reviewer. First, 
consider the probability of being in position y in the sample of size m, given position r in the ground truth ranking. When 
drawing the sample, we need to choose y − 1 individuals out of r − 1 that are above agent r in the ground truth, and then 
choose m − y out of n − r that are worse. In total, as expected, we are choosing m − 1 other agents out of n − 1. Hence:

P [Y = y | R = r] =
(

r − 1

y − 1

)(
n − r

m − y

)/(
n − 1

m − 1

)
,

where Y is a random variable representing the position in the review bundle and R is a random variable representing the 
ground truth position. In order to proceed with the analysis, we need to make a simplifying assumption that the probability 
above is independent for each bundle. This is not true in general,6 however our empirical data shows that its effect is 
negligible for large n.

Denote now the nomination quota by kq := k
n m and recall that in any given review bundle, top �kq� agents are nominated 

for certain and the next position is nominated with the probability of kq − �kq�. Hence, the probability of being nominated 
in any bundle from position r in the ranking is, independently:

qr :=
�kq�∑
y=1

P [Y = y | R = r] + (
kq − �kq�

)
P [Y = �kq� + 1 | R = r].

Since each review bundle can be regarded as a Bernoulli trial with probability qr and to be accepted an agent has to be 
nominated �m/2� times, the probability of being accepted from position r is given by the cumulative Binomial distribution:

P [accept | R = r] =
m∑

i=�m/2�

(
m

i

)
qi

r(1 − qr)
m−i . �

An illustration of acceptance probabilities as a function of the ground truth position is shown in Fig. 6. We can see that 
agents that are well inside the top k are almost certain to be accepted while those well outside of the top k are almost 
certain to be rejected. The width of the interval around the top k for which the probability is away from the extremes is 
dictated by m. Higher m reduces uncertainty by providing more “trials” for each agent and so narrows the interval.

We can now use the derived probability of acceptance to calculate the expected size of the accepting set. Since every 
individual is accepted independently with probability P [accept | R = r] and contributes 1 to the size if they are accepted, 
the expected size is given by:

E[accepting size] =
n∑

r=1

P [accept | R = r].

The complexity of this expression makes it difficult to analyse it explicitly. However, Fig. 7a shows a typical behaviour of 
the expected size as a function of m.7 We observe that this approaches k as m increases. However, for small values of m the 

6 Suppose we have a peer selection instance with n = 5 and m = 3, where agents are labelled by their ground truth position. There are 5 review bundles 
in total, one for each agent. Agent 1 must be in 3 of them and must be placed first in each according to the accurate reviewers. Now consider agent 2. 
The probability that they are placed first, according to the calculation above, is 1

2 , however, at least one of their bundles must contain agent 1, hence the 
probability of agent 2 placing first in all bundles is 0.

7 Note the figure’s y-axis begins at 26 – the variations are much milder than a cursory look implies.
12
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Fig. 6. Probability of being accepted by the algorithm given the position in the ranking when n = 130 and k = 30.

Fig. 7. (a) Expected size of the accepting set returned by the algorithm when n = 130, k = 30 and varying m. (b) Expected recall and accepting size when 
n = 130, m = 9, ε = 0.15 and varying k. The green line shows the expected accepting size and the blue line shows the recall. (c) The slack parameter ε
required to achieve the expected accepting size of k. We computed ε using the method outlined in Section 5.4, with n = 130, k = 30 and varying m.

expected size can vary significantly from k, especially when m is odd, recall that agents need to get a clear majority in this 
case, making selection more difficult.

To tackle these issues, we introduce an additional parameter ε, that we call the slack parameter, which allows us to 
control the size of the accepting set more finely. If ε is set to a non-zero value (usually a positive one), we extend the 
nomination quota in each review bundle by this amount. Usually this increment simply contributes to the probability that 
the “fractional nominee” is nominated. For example, in the setting n = 130, m = 9 and k = 30, Fig. 7a shows the expected 
size slightly above 27 while our aim is 30. Setting ε = 0.13 yields the expected size very close to 30. For most practical 
applications ε ∈ [−0.05, 0.15], as shown in Fig. 7c, meaning the original algorithm is rather well-behaved. Note that this is 
in contrast to other inexact mechanisms in the literature: Credible Subset must return no solutions with positive probability 
[23], while the Dollar Partition method may return as many additional agents as the number of clusters [3].

The above analysis assumes reviewers are accurate and all weights set to 1. If these assumptions fail, we cannot provide 
any guarantees even for the expected size of the accepting set. It is straightforward to construct marginal cases in which 
everyone or no one is selected in the worst case scenario, as we see in the next example.
13



O. Lev, N. Mattei, P. Turrini et al. Artificial Intelligence 316 (2023) 103843
Fig. 8. n = 100, k = 25, m = 8. Each plot shows the sum of nominations for each agent in the respective ground truth position, averaged over 1000 simula-
tions. The red line shows the selection threshold of m

2 .

Example 4. Consider the setting with 3 agents with everyone reviewing each other and suppose we want to select one 
individual (i.e., n = 3, m = 2 and k = 1). Suppose agent 1 reviews 2 above 3, agent 2 reviews 3 above 1 and agent 3 reviews 
1 above 2. The nomination quota with ε = 0 is 2

3 and every agent is ranked in the first place once. Hence, each agent is 
selected with probability 2

3 independently and so there exists a realisation where no one is selected as well as one where 
everyone is selected.

To ensure that the algorithm returns a reasonable number of agents in expectation, we need to put some assumptions 
on the population of agents. Suppose we have a large number of agents, n, and a common acceptance rate of 20% (i.e., 
k = 0.2n). If all reviewers are random, we expect the nominations to be spread evenly between the agents, with each agent 
receiving 0.2m nominations in expectation. Hence very few agents will achieve the threshold of m

2 and be selected. However, 
in a more realistic scenario where the reviewers are able to discriminate between agents, it is likely that a good number of 
agents will reach the required acceptance threshold (see Fig. 8). The unfavourable performance in the noisy settings is the 
motivation for the reviewer weights, as will be seen below (in particular, in the empirical part, Section 6).

Also note that in the definition of the algorithm we stipulate that ε is part of the input. One could be tempted to 
calculate ε after collecting the reviews in order to adjust the output size to be exactly k, however this is undesirable for 
several reasons. First, the run of the algorithm is non-deterministic, hence it might be impossible to find a value of ε that 
guarantees such output size on every run. Second, and most importantly, this would eliminate strategyproofness since now 
an agent could estimate that reporting a particular untruthful review force the mechanism to increase ε and so increase 
their chances of selection.

In the next section we derive the expected recall of our algorithm and the in Section 5.4 we give practical guidance on 
setting the slack parameter.

5.3. Expected recall

In Section 5.2 we derived the probability of acceptance given a position in the ground truth ranking assuming no noise 
in the reviewer’s reported rankings. In this section, we modify the expression in Proposition 5 to include ε, the slack 
parameter. To do this, we update the nomination quota when computing qr in Equation (2). Hence, let kε

q := kq + ε and

qε
r :=

�kε
q�∑

y=1

P [Y = y | R = r] + (
kε

q − �kε
q�)P [Y = �kε

q + 1� | R = r]. (3)

This gives us P [ε-accept | R = r] for each ground truth position by simply replacing qr in Equation (1) by qε
r . The expected 

size is again given by a similar expression:

E[accepting size] =
n∑

r=1

P [ε-accept | R = r]. (4)

In principle, we can now derive the expected performance of the algorithm. However, since the algorithm’s output is 
inexact, there are multiple performance measures to consider, as is often the case for classification algorithms [5]. For 
example, we might care about how many agents of the top k according to the ground truth we have selected (recall) or we 
14
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may want to not select too many agents from outside of the top k (false positive rate). We focus on the former, referred to 
as accuracy by Aziz et al. [4]. The connection with classification metrics and exact definitions will be further explored in 
Section 6.1. In the following theorem, we provide the analytic expression for expected recall of PeerNomination.

Theorem 2. The expected recall of Unit PeerNomination in the setting n, m, k is

E[recall] = 1

k

k∑
r=1

P [ε-accept | R = r],

where P [ε-accept | R = r] is the probability of acceptance for the agent in the ground truth position r given by (3).

Proof. Consider a single run of PeerNomination. Let Xi be a random variable such that Xi = 1 if agent i is accepted by the 
algorithm and Xi = 0 otherwise. Since an agent in the top k positions contributes 1 to recall and 0 otherwise, recall is equal 
to 1

k

∑n
i=1 1i≤k Xi = 1

k

∑k
i=1 Xi . Now, since Xi is just a Bernoulli random variable,8 E[Xi] =P (Xi = 1). Finally, we have

E[recall] = 1

k

k∑
r=1

P [Xr = 1] = 1

k

k∑
r=1

P [ε-accept | R = r],

as required. �
Again, the complexity of these expressions hinders theoretical analysis but Fig. 7b shows a typical output for different 

values of k. While its performance appears good in isolation, it is important to compare PeerNomination with other peer 
selection mechanisms which we do in Section 6.

5.4. Using the slack parameter in practice

The analytic expression for the expected accepting size of PeerNomination, given in Equation (4) allows us to derive 
a practical way to estimate the slack parameter ε. Given the setting (n, m, k), let f (ε) = E[accepting size] as given in 
Equation (4). Since we want f (ε) = k, to estimate the required slack parameter we simply need to find a root of the 
function g(ε) = f (ε) −k. Since f is highly non-linear (and not even continuous), an analytic solution for the root is unlikely 
to be obtainable. However, since f is easy to compute, a good approximation for the root can be obtained quickly using 
a root-finding algorithm, e.g., using Brent’s method. Indeed, in Section 6, we use this method to estimate ε when running 
PeerNomination.

5.5. Effect of weights

The constructive use of weighting schemes in Algorithm 1 depends on the ability of identifying accurate and inaccurate 
reviewers, and using this identification to reweight their reviews. Not knowing the ground truth means any identification of 
accurate/inaccurate agents has to depend on comparing different agents’ submitted rankings and nominations. If all agents 
were accurate no reweighting of agents would be needed, but as the proportion of accurate agents drops the problem 
becomes more difficult. Still, when a large majority of agents are accurate, the correct opinion is usually the majority if 
inaccurate agents are providing random rankings. However, if the number of accurate agents is very low, or other agents are 
actively malicious, identification becomes impossible, as there is no metric to evaluate the agents against.

To provide some intuition to the conceptual underpinnings of our algorithm we now present a simplified setting, 
and show how our algorithm – even with a very simple, conservative, weighting scheme – is still able to improve over 
PeerNomination. We start with an m-regular assignment, where each agent has one of two types: A, meaning the agent 
is an accurate reviewer; or A, meaning the agent is inaccurate. Recall that in PeerNomination a proposal is selected if a 
majority of their reviewers approve. We show that a very simple dynamic weighting scheme, only relying on knowing how 
many times an agent has been in a minority, has a good chance of flipping a decision made by A agents to one made by A
agents, improving on PeerNomination.

Let an A-agent be identified as inaccurate if they hold the minority opinion in at least j panels. We want to find the 
probability of the following event: (1) an agent’s panel consists of an A-majority and (2) enough of the A-agents of that 
majority are identified as inaccurate.

We now wish to use this simplified model to derive the mathematical expressions of the probability of surely identifying 
a “bad” reviewer, and seeing if it can be a worthwhile improvement to the algorithm. While the mathematical expressions 
we reach are not, on their own, easily analyzable, examining them empirically shows that, indeed, even in this simple model 
we reach meaningful values.

8 As explained in Section 5.2, Xi are not exactly independent but this simplifying assumption is reasonable for large n.
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Fig. 9. The probability of identifying an inaccurate agent, when m = 9, and the threshold for identification is j.

Given the noise model, let q be the probability for an agent to be of type A. Then the probability that an agent is 
reviewed by a majority of A agents and that majority is of size k is:

qB,k = P [A-majority of size k] =
(

m

�m/2� + k

)
q�m/2�+k(1 − q)m−(�m/2�+k).

In such a case we would like to identify at least k of the A agents as inaccurate in order to nullify their votes.
We can also find the probability that A-agents have a majority of any size:

qB := P [A-majority] =
�m/2�∑
k=1

qb,k =
�m/2�∑

i=0

(
m

i

)
(1 − q)iqm−i .

Our simple weighting algorithm labels an agent as an A-agent if they are in minority for at least j of their other panels 
(and are a majority on at least one panel, where decreasing their weight will make a change). The probability of this event, 
qdet, is given by the cumulative binomial probability, keeping in mind that the probability of A-majority on a panel is 
conditioned on the fact that they contain at least one A-agent:

q′
A := P [A-majority | there is at least one A]

=
�m/2�∑

i=0

(
m − 1

i

)
(1 − q)iqm−1−i

⇒qdet =
m−1∑
i= j

(
m − 1

i

)
(q′

A)i(1 − q′
A)m−1−i.

Notice that A may be not just inaccurate but adversarial, in which case we could flip their nomination and only need to do 
so for k of them. However, we take the safer approach here, which means we need to detect at least 2k A-agents to correct 
the decision. The probability of this correcting event is given by the following expression:

P [correction event] =
�m/2�∑
k=1

qb,k ·
⎛
⎝�m/2�+k∑

i=2k

(�m/2� + k

i

)
qi

det(1 − qdet)
�m/2�+k−i

⎞
⎠ .

As desired, we get a significant probability of the correction event, illustrated by Fig. 9. As can be seen, for a wide variety of 
q and j, even our very conservative weighting scheme produces a reasonably high probability of improving some reviews. 
As we shall see with our designed weighting schemes in Section 4.3, examined by our simulations, even better results can 
be achieved.

It should be noted that one could produce analogous probabilities of the weighting scheme incorrectly identifying A-
agents as A-agents. However, for a large enough j (say, j ≥ m/2), and a majority of A agents (i.e., q < n/2), this number will 
always be smaller, i.e., the benefit from the reweighting will be positive.

6. Empirical analysis

In this section we use an experimental framework to demonstrate that PeerNomination outperforms other mechanisms 
proposed. In doing so we draw a novel connection between inexact peer selection and the literature on classification in 
machine learning [5].
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6.1. Classification measures

The usual and intuitive way to measure the “accuracy” of an exact peer-selection mechanism is counting how many 
agents from the top k positions in the ground truth have been selected, as a proportion of all k agents selected. This allows 
us to compare exact peer-selection mechanisms as was done by Aziz et al. [4]. However, comparison with (and between) 
inexact mechanisms is less obviously done. Since the accepting set is not guaranteed to be exactly of size k, any output with 
more than k agents may artificially increase the performance of the inexact mechanism and the opposite for any smaller 
output. One option is to measure the performance as a proportion of the output size, however, this approach will overrate 
outputs that are accurate but much smaller than k. Inexactness allows us to view peer selection as a classification problem 
in which selection means positive classification. We can then view the selected agents from the true top k as true positives 
and the non-selected agents from outside the true top k as true negatives. We apply the standard classification performance 
measures [5] such as recall and precision to PeerNomination to analyse its performance.

More formally, let S be the set of agents selected by the algorithm and S+ = {r ∈ S | rank(r) ≤ k} the set of selected 
agents that are in the true top k, i.e., true positives (TP). Similarly, we can use S− = {r ∈ S | rank(r) > k} for false positives 
(FP). Hence we can define: TP = |S+|, FP = |S−| = |S| − TP, true negatives TN = |{r /∈ S | rank(r) > k}| = n − k − FP, and false 
negatives FN = |{r /∈ S | rank(r) ≤ k}| = n − |S| − TN.

We can now look at some of the typical performance metrics: Positive Predictive Value (PPV) (aka Precision), True 
Positive Rate (TPR) (aka Recall) and False Positive Rate (FPR), defined as follows:

PPV := TP

TP + FP
TPR := TP

TP + FN
FPR := FP

TN + FP

To see how the nomination quota affects these parameters in PeerNomination we use the Precision-Recall (PR) and 
Receiver-Operator Characteristic (ROC) curves. These curves show the trade off between sensitivity (TRP) and inclusivity 
(FPR). We use the slack parameter ε as the sensitivity threshold akin to the probability threshold in the machine learning 
literature (see e.g., [18]). So we vary ε such that the nomination quota varies between 0 and m and measure the Precision, 
Recall and False Positive Rate at each value. An example is presented in Fig. 11.

The curves show the trade off between sensitivity (TRP) and inclusivity (FPR): As we follow the ROC curve, which 
corresponds to gradually increasing the nomination quota, the (TPR) increases quickly. That is, by adding few extra agents 
we already improve significantly the selection of the true top k proposals. On the other hand, we can still achieve TPR of 
around 0.8 with the FPR very close to 0. This shows that we can select around 80% of the proposals in the true top k if 
we concentrate on not selecting the “undeserving” individuals, i.e., those that fall outside the true top k. While the curves 
are interesting on their own, we want to be able to compare them to other peer-selection mechanisms, so an important 
direction is finding a generalizable way of constructing curves for other peer-selection mechanisms.

6.2. Experimental setup

We extend the testing framework developed by Aziz et al. [4] and using methods from PrefLib [31]. As in Aziz et al. [4], 
we set n = 120 and tested the algorithm on various values of k and m. The test values for k were 15, 20, 25, 30, 35 and the 
test values for m were 5 to 11.9 For each setting, we tested algorithms across various noise levels. For the comparison, we 
included PeerNomination paired with the various weighting schemes introduced in Section 4.3 (including Unit) and also 
ExactDollarPartition as the state-of-the-art strategyproof peer selection algorithm. Mattei et al. [29] provides comparison 
of Unit PeerNomination against other peer selection algorithms in a low-noise setting.

Both ExactDollarPartition and PeerNomination (using Algorithm 2) rely on partition-based assignments. However, 
Algorithm 2 partitions agents into 2 clusters, while ExactDollarPartition tends to perform best when the number of 
clusters is 4. For this reason, we decided to generate our m-regular assignments with l = 4 clusters using the algorithm 
by Aziz et al. [4]. This might make weighted PeerNomination non-strategyproof but ensures that the performance of 
ExactDollarPartition is not crippled to ensure a fair comparison. In practice, the performance of PeerNomination does 
not depend on the type of assignment. We include the performance of PeerNomination paired with Algorithm 2 separately 
in Fig. 14. In fact, we observe that PeerNomination tends to perform slightly better when the assignment is generated by 
Algorithm 2.

We use two different settings to model the noise among the reviewers – one with random reviewers and one with 
contrarian (or adversarial) reviewers. In both settings, we partition the population into accurate and inaccurate (random 
or contrarian) reviewers and generate individual noisy rankings using Mallows noise [28], as discussed in Section 2.3. In 
the random case, the dispersion parameter of accurate reviewers is ϕ = 0.5, while the random reviewers have ϕ = 1. In 
the contrarian case, the values are 0.8 and 1.2, respectively. In our experiments, we gradually increase the proportion of 
inaccurate reviewers to test the robustness of the algorithms to noise. Note that while the reviewers’ individual rankings are 
noisy, we assume that their reporting is truthful with respect to their beliefs. Since the tested algorithms are strategyproof, 
the truthful profile is an equilibrium one.

9 In Figs. 12, 13 and 14, we only present the results for k = 25 and m = 9, however these are representative of other settings.
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Fig. 10. Spearman correlation of the weights from the different weighting schemes with the underlying ϕ of each agent. The bars represent the mean and 
the standard deviation over 1000 simulations of the weights.

To summarise, a single simulation consists of the following steps:

1. Generate a random m-regular assignment matching reviewers to proposals.
2. Determine the type, i.e., accurate or inaccurate, as well as the rankings of each reviewer for their bundle of proposals 

using a Mallows model.
3. Run each algorithm on the generated instance and measure their performance, e.g., precision and recall.

The experiment was repeated 1000 times for each setting, after which the average recall was calculated giving us high 
confidence in our results. For PeerNomination, we used theoretical estimates of ε to achieve the right expected size of the 
accepting set. The error bars in Figs. 12 and 13 represent 1 standard deviation.

We observe that in our test, ExactDollarPartition was given access to the partial (noisy) rankings of the Mallows model, 
while PeerNomination only used the simple rule that reviewers approve the top half of their reported order. Hence, our re-
sults show that PeerNomination is capable of performing as well or better than ExactDollarPartition even in the presence 
of less information. An interesting direction for future work would be a complete analysis of the possible reporting spaces, 
e.g., partial rankings, full rankings, utilities, approvals, and the impact of those reports on overall algorithm performance.

In another testing setup we adopted a slightly different procedure in order to ensure a fair comparison. In each simu-
lation, we generate a random instance, run PeerNomination using the target k as an input, measure the actual size of the 
output and then run EDP using this actual winning set size as the input target size k for EDP. This ensures that during each 
simulation both algorithms return the same number of winning proposals. The results of this comparison are presented in 
Fig. 13.

6.3. Results

6.3.1. Random reviewers
Fig. 12a compares the performance of PeerNomination with selected weighting schemes – as presented in Section 4.3

– and ExactDollarPartition. It can be observed that when the proportion of accurate reviewers is high, i.e., in the 0.8 
and 1.0 range, the tested weighting schemes show practically no improvement over Unit. This is a setting with barely 
any noise, where the weighting schemes behave as desired, without overfit. It can also be observed that all weighting 
schemes outperform ExactDollarPartition. When the proportion of random reviewers rises, i.e., in the 0.4 and 0.6 range, 
Unit PeerNomination is underperforming compared to all other weighting schemes. At 0.2, the imbalance decreases fur-
ther. For instance, PeerNomination with Distance is 2.28 times more accurate than PeerNomination with Unit. We can 
see that the advantage of weighting schemes over EDP is also evident in the 0.4 setting where despite the lower output 
size, PeerNomination with Distance achieves higher recall. The ability of the weighting schemes to discriminate between 
reviewers is further supported by Fig. 10, which demonstrates that our metrics strongly correlate with the underlying ϕ . 
This means that our metrics are able to identify inaccurate reviewer with reasonable certainty.

In general, weighting schemes are much better than Unit at keeping the output size close to the desired k, with Distance 
keeping the output size consistent across all levels of noise. At the same time, Unit’s output size is reduced drastically, by a 
factor of 4, which is explained by Fig. 8: noisier reviewers tend to agree on nominations less, meaning that nominations are 
more spread out and so few proposals reach the selection threshold. In addition, the much greater recall of Distance and 
other weighting schemes indicates the additional selected agents are usually the deserving ones. Between the weighting 
schemes, Distance manages to gain more and more advantage as the noise levels increase as it is the most fine-grained 
and aggressive one, i.e., it decreases the weight of inaccurate reviewers most severely compared to the other schemes. This 
allows Distance to both identify the inaccurate reviewers and maintain consistent output size. It has to be noted that, when 
O. Lev, N. Mattei, P. Turrini et al. Artificial Intelligence 316 (2023) 103843
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Fig. 11. ROC and PR curves for PeerNomination. They were computed empirically with n = 120,m = 8,k = 25.

Fig. 12. Performance comparison for n = 120,k = 25,m = 9.
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Fig. 13. Results of the forced size experiment, where PeerNomination is run first to set EDP’s target size, so that both are always guaranteed to return the 
same number of agents. The parameters are set to n = 120, k = 25, m = 9.

noise is low, Distance tends to slightly worsen its performance. For instance, at 1, even if staying above EDP, PeerNomination

with Distance achieves 4% lower recall than PeerNomination with Unit.

6.3.2. Contrarian reviewers
When we work with settings with contrarian reviewers, the weighting schemes are even more effective. The results of 

our study are shown in Fig. 12b. Notice how we analyse the proportion of accurate reviewers from at 0.5, keeping the 
contrarians as a minority. Again, at low noise levels, i.e., 1, the results match, as expected, the observations made in the 
previous paragraph. As the proportion of contrarian reviewers rises, e.g., at the 0.7 point, we can observe that all schemes 
outperform EDP, with Distance reaching a 20% performance increase when compared to EDP. Interestingly, at moderate 
levels of noise, e.g., 0.7 and 0.8, Distance shows similar performance to the case with random reviewers. Even though the 
reviewers are, on average, more diverging, they are also easier to detect. Even when half of the population is contrarian, 
Distance gets impressively close to the theoretical maximum of 50% as shown in Fig. 12b. Beyond this point, the contrarian 
point of view becomes a majority, and there is no way to retrieve the original ground truth.

It is finally worth noting that the bottom graphs in Figs. 12a and 12b show that PeerNomination tends to return 
a slightly larger than k set, on average, in the noiseless setting, usually < 1 additional agent. This may give the im-
pression that the results might inflate the performance of PeerNomination compared to an exact algorithm, such as 
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Fig. 14. Performance comparison for n = 120, k = 25, m = 9 in a contrarian setting between the PeerNomination weighting schemes. Here the assignment 
for each iteration was generated using Algorithm 2, ensuring that the mechanisms are strategyproof.

ExactDollarPartition, provided that the extra agents are chosen correctly. Section 6.3.3, where we perform a fair com-
parison between the two, shows that this makes a negligible difference and only in some settings.

6.3.3. Fair tests
The fair testing setup described above only allows us to test an inexact algorithm, which does not always output the 

target number of agents. Hence, we chose to compare the best performing weighting scheme of PeerNomination, Distance, 
against ExactDollarPartition. The results of the fair test, Fig. 13, align with the previous findings. In the noiseless setting, 
ExactDollarPartition does gain an advantage over PeerNomination paired with Distance, likely due to over-fitting of the 
weighting scheme. However, as the level of noise increases, Distance gets a clear advantage over ExactDollarPartition. For 
instance, when 40% of reviewers are contrarian, PeerNomination sees a 34% increase in recall over ExactDollarPartition. 
The advantage is particularly stark in the contrarian setting, where Distance benefits greatly from the ability to identify and 
reweight the inaccurate reviewers.

7. Discussion and conclusions

We have proposed a novel strategyproof peer selection algorithm – PeerNomination, which weighs reviewers based on 
their perceived accuracy. The basis for this reweighting is the observation that in most cases, one’s reviews are correlated 
in quality, and we can use the correlation to improve the recall of the overall algorithm. We develop several weighting 
methods, showing that even straightforward ones can reach high quality outcomes, even under high levels of noise in the 
reported rankings of the reviewers. Hence, we have shown that PeerNomination achieves state-of-the-art performance on 
the problem of peer selection.

Given that PeerNomination is constructed in a modular way, there are a variety of weighting and evaluation methods 
that can be developed for particular settings or noise models. This modularity allows for multiple directions of future 
development. One possible direction for future work is exploring whether the weighting schemes we have developed so 
far are optimal. As we have already seen from our results, different schemes perform best under different conditions. For 
example, a more aggressive approach might come out on top when the majority of reviewers are inaccurate but lose out to 
a more forgiving weighting when there is not much noise in the reported rankings. Indeed, while Distance (with a rather 
aggressive approach) seemed as the most promising weighting scheme when the share of good reviewers was not very high, 
both Majority and Step are much simpler and easier to calculate and administer.

While we have examined the weighting schemes under various variants of the Mallows model, other weighing schemes 
may behave differently under different distributions. In particular, Random Utility Models (RUMs) [2], which have been used 
extensively in social choice, provide an interesting alternative to consider. Moreover, each particular peer review setting has 
its own assumptions and sources of noise, and it might be possible to develop a weighing scheme that adapts well to its 
particular situation. Even among the proposed weighting schemes, each has free parameters that can be optimised. Review-
ers’ assessment patterns can also be learnt over time and we can use this information as an input for PeerNomination. The 
use of convolutional neural networks to infer peer assessment patterns is currently under study [34].

On the other hand, the weighting schemes can be easily decoupled form PeerNomination and adapted to be 
used with other strategyproof peer selection mechanisms. For example, considering the already good performance of 
ExactDollarPartition under noisy conditions, it would be interesting to see whether it benefits from reweighting in a sim-
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ilar way to PeerNomination. Note that we did not run this test explicitly in this paper as adapting ExactDollarPartition

to use reweighting schemes would require us to completely redesign the ExactDollarPartition clustering and assignment 
mechanisms. Observe that while for PeerNomination Algorithm 2 ensures a particular structure to the allocation of papers, 
this algorithm does not work for ExactDollarPartition. Specifically, using the k-partition balanced assignment procedure 
that is part of ExactDollarPartition with 3 or more partitions may result in the case illustrated in Fig. 5, causing none of 
the proposed weighting schemes to be impartial for ExactDollarPartition.

There are many avenues for additional theoretical work on summarising and quantifying the effects of strategyproofness 
of peer review mechanisms, as well as the effects of weighting schemes. We have seen different trade-offs, e.g., relaxing 
exactness or imposing constraints on the review assignment, employed to ensure strategyproofness. It is important to spec-
ify these assumptions precisely and, if possible, quantify their effect on the performance of peer selection theoretically. For 
example, a direction for future work lies in evaluating non-strategyproof reweighting methods such as ones based on ex-
pectation maximisation (EM) algorithms including GLAD [50], Dawid-Skene [15], and even PageRank [36,22]. While none of 
these methods maintain the first-order requirement for strategyproofness in our setting, it would be interesting to evaluate 
recall of these methods as compared to strategyproof methods.

In the context of peer reviewing, we see strategyproofness as a non-negotiable desideratum, which we strove for when 
designing our algorithm even in the presence of noise. Our assignment and weights are selected in such a way that there 
is no incentive for reviewers to gain an advantage by discrediting other reviewers or submitting insincere reports, as other 
peer selection mechanisms used in practice may allow [33]. We only use non-strategyproof systems as a benchmark, to 
compare the performance of our algorithm to an ideal optimum, however we do not advocate the use of such systems 
in practice. Although beyond the scope of this paper, we believe that the study of non-strategyproof systems can lead to 
important discoveries in terms of “cost of strategyproofness”, i.e., what we are sacrificing in terms of optimality in order 
to deploy systems where reviewers do not have an incentive to lie. This may even lead to “acceptable weakenings” of 
strategyproofness, if optimality gains are proved to be significant. Currently, we do not have theoretical guarantees that 
strategyproof peer selection algorithms produce close to optimal results, within the respective constraints. Likewise, we do 
not know that a relaxation of strategyproofness is the only way to obtain significant gains in terms of recall. Hence, it is 
unclear whether the focus should lie in improving the recall of the current mechanisms or in developing new mechanisms 
that rely on weaker assumptions. We believe this to be an important future direction for research in peer selection.

If exactness, rather than strategyproofness, is the objective, there may be little reason to go beyond a Borda-like mech-
anism and using either pairwise Shah and Wainwright [44] or complete rankings [13]. Additionally, past work including 
that of Mattei et al. [29], Aziz et al. [4], and Kahng et al. [20] provide some empirical comparison of Borda and various 
strategyproof mechanisms, which sheds some light on the trade-off between exactness and strategyproofness. Theoretical 
quantification of the various trade-offs between, e.g., exactness, impartiality and optimality, is indeed an exciting direction 
for future work. Additionally, when we do not use strategyproofness mechanisms there is the question of what exactly are 
agents incentivised to report [45]. An interesting future direction is to analyse these mechanisms from a mechanism design 
viewpoint [35] where we align the incentives of the agents in a way that might not be strategyproof.

Finally, there has been a lack of real-world data analysis in the field of peer selection. The challenge lies in that in 
the domains we considered, such as academic peer review, the best available ground truth can only be acquired from 
subjective opinions. For instance, to evaluate the submissions to a major conference, an independent expert panel would 
have to evaluate and agree on the ranking of thousands of papers – and even that would not guarantee the best possible 
approximation of the ground truth. Nevertheless, any validation with real-world data would give a much better idea of the 
true performance of the current mechanisms as well as help us create more realistic artificial models.
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