4,294 research outputs found

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    One step multiderivative methods for first order ordinary differential equations

    Get PDF
    A family of one-step multiderivative methods based on Padé approximants to the exponential function is developed. The methods are extrapolated and analysed for use in PECE mode. Error constants and stability intervals are calculated and the combinations compared with well known linear multi-step combinations and combinations using high accuracy Newton-Cotes quadrature formulas as correctors. w926020
    • …
    corecore