33,917 research outputs found

    Tsirelson's Bound Prohibits Communication Through a Disconnected Channel

    Full text link
    Why does nature only allow nonlocal correlations up to Tsirelson's bound and not beyond? We construct a channel whose input is statistically independent of its output, but through which communication is nevertheless possible if and only if Tsirelson's bound is violated. This provides a statistical justification for Tsirelson's bound on nonlocal correlations in a bipartite setting.Comment: 9 pages, 2 figures. Title and abstract modified, exposition simplifie

    Integrating security in a group oriented distributed system

    Get PDF
    A distributed security architecture is proposed for incorporation into group oriented distributed systems, and in particular, into the Isis distributed programming toolkit. The primary goal of the architecture is to make common group oriented abstractions robust in hostile settings, in order to facilitate the construction of high performance distributed applications that can tolerate both component failures and malicious attacks. These abstractions include process groups and causal group multicast. Moreover, a delegation and access control scheme is proposed for use in group oriented systems. The focus is the security architecture; particular cryptosystems and key exchange protocols are not emphasized

    Causal Fermion Systems as a Candidate for a Unified Physical Theory

    Get PDF
    The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction.Comment: 19 pages, LaTeX, minor improvements (published version

    Trend-based analysis of a population model of the AKAP scaffold protein

    Get PDF
    We formalise a continuous-time Markov chain with multi-dimensional discrete state space model of the AKAP scaffold protein as a crosstalk mediator between two biochemical signalling pathways. The analysis by temporal properties of the AKAP model requires reasoning about whether the counts of individuals of the same type (species) are increasing or decreasing. For this purpose we propose the concept of stochastic trends based on formulating the probabilities of transitions that increase (resp. decrease) the counts of individuals of the same type, and express these probabilities as formulae such that the state space of the model is not altered. We define a number of stochastic trend formulae (e.g. weakly increasing, strictly increasing, weakly decreasing, etc.) and use them to extend the set of state formulae of Continuous Stochastic Logic. We show how stochastic trends can be implemented in a guarded-command style specification language for transition systems. We illustrate the application of stochastic trends with numerous small examples and then we analyse the AKAP model in order to characterise and show causality and pulsating behaviours in this biochemical system

    A critical rationalist approach to organizational learning: testing the theories held by managers

    Get PDF
    The common wisdom is that Popper's critical rationalism, a method aimed at knowledge validation through falsification of theories, is inadequate for managers in organizations. This study falsifies this argument in three phases: first, it specifies the obstructers that prevent the method from being employed; second, the critical rationalist method is adapted for strategic management purposes; last, the method and the hypotheses are tested via action research. Conclusions are that once the obstructers are omitted the method is applicable and effective

    Bell's Theorem and Locally-Mediated Reformulations of Quantum Mechanics

    Get PDF
    Bell's Theorem rules out many potential reformulations of quantum mechanics, but within a generalized framework, it does not exclude all "locally-mediated" models. Such models describe the correlations between entangled particles as mediated by intermediate parameters which track the particle world-lines and respect Lorentz covariance. These locally-mediated models require the relaxation of an arrow-of-time assumption which is typically taken for granted. Specifically, some of the mediating parameters in these models must functionally depend on measurement settings in their future, i.e., on input parameters associated with later times. This option (often called "retrocausal") has been repeatedly pointed out in the literature, but the exploration of explicit locally-mediated toy-models capable of describing specific entanglement phenomena has begun only in the past decade. A brief survey of such models is included here. These models provide a continuous and consistent description of events associated with spacetime locations, with aspects that are solved "all-at-once" rather than unfolding from the past to the future. The tension between quantum mechanics and relativity which is usually associated with Bell's Theorem does not occur here. Unlike conventional quantum models, the number of parameters needed to specify the state of a system does not grow exponentially with the number of entangled particles. The promise of generalizing such models to account for all quantum phenomena is identified as a grand challenge.Comment: 61 pages, 2 figures; accepted for publication by Rev. Mod. Phy
    corecore