228 research outputs found

    A Study of the Impact of Various Geometric Factors on the Capacity of Short Range Indoor MIMO Communications Channels

    Get PDF
    MIMO antenna array systems have been proposed as a means of increasing the spectral efficiency of wireless systems. However, their performance is likely to be sub-optimal if typical uniform antenna array structures are arbitrarily positioned; as they depend on spatial multiplexing. This is particularly true for indoor environments in which transmission ranges are short resulting in a strong correlation of the main propagation paths, especially the line-of-sight components. This makes it difficult to achieve successful spatial multiplexing which depends on a decorrelated set of signal components. Thus, the physical propagation channel and geometry of the antenna arrays, especially the inter-element spacing, can determine how effectively spatial multiplexing can be realised. This thesis investigates MIMO communications channels involving a single transmitter and receiver operating in a simple indoor environment using a ray-tracing simulation model. The results and analysis provide system designers with an understanding of the limits of MIMO system performance in the context of both the geometric properties of the arrays and the propagation conditions. These results serve to explain the often contradictory results that appear in the wider literature on MIMO systems. Guidelines for the deployment of standard array structures in an indoor environment are provided. An original solution to optimising MIMO system performance by adjusting the geometry of uniform linear arrays is described. This is done using an iterative search method based on the Metropolis algorithm in which individual array elements are repositioned. It is demonstrated through computer simulation that capacity levels, similar to those predicted by the theory for ideal Rayleigh channels, are possible to achieve with realistic modifications to uniform linear arrays

    Design and Analysis of LoS MIMO Systems with Uniform Circular Arrays

    Full text link
    We consider the design of a uniform circular array (UCA) based multiple-input multiple-output (MIMO) system over line-of-sight (LoS) environments in which array misalignment exists. In particular, optimal antenna placement in UCAs and transceiver architectures to achieve the maximum channel capacity without the knowledge of misalignment components are presented. To this end, we first derive a generic channel model of UCA-based LoS MIMO systems in which three misalignment factors including relative array rotation, tilting and center-shift are reflected concurrently. By factorizing the channel matrix into the singular value decomposition (SVD) form, we demonstrate that the singular values of UCA-based LoS MIMO systems are \textit{independent} of tilting and center-shift. Rather, they can be expressed as a function of the \textit{radii product-to-distance ratio} (RPDR) and the angle of relative array rotation. Numerical analyses of singular values show that the RPDR is a key design parameter of UCA systems. Based on this result, we propose an optimal design method for UCA systems which performs a one-dimensional search of RPDR to maximize channel capacity. It is observed that the channel matrix of the optimally designed UCA system is close to an orthogonal matrix; this fact allows channel capacity to be achieved by a simple zero-forcing (ZF) receiver. Additionally, we propose a low-complexity precoding scheme for UCA systems in which the optimal design criteria cannot be fulfilled because of limits on array size. The simulation results demonstrate the validity of the proposed design method and transceiver architectures.Comment: 13 pages, 10 figures, This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Design and Evaluation of Compact Multi-antennas for Efficient MIMO Communications

    Get PDF
    The use of multi-antenna systems with multiple-input multiple-output (MIMO) technology will play a key role in providing high spectrum efficiency for next generation mobile communication systems. This thesis offers valuable insights on the design of compact multi-antennas for efficient MIMO communications. In the course of the thesis work, several novel six-port antenna designs have been proposed to simultaneously exploit all six possible degrees-of-freedom (DOFs) by means of various antenna diversity mechanisms (Paper I & II). Moreover, the thesis also examines the potential of using uncoupled matching networks to adaptively optimize compact multi-antenna systems to their dynamic usage environments (Paper III). Furthermore, a simple and intuitive metric is proposed for evaluating the performance of MIMO antennas when operating in the spatial multiplexing mode (Paper IV). Last but not least, cooperation among multi-antenna systems at all three sectors of a given cellular base station is shown to deliver significant benefit at sector edges (Paper V). The thesis with five included research papers extend the understanding of MIMO systems from an antenna and propagation perspective. It provides important guidelines in designing compact and efficient MIMO antennas in their usage environments. In Paper I, a fundamental question on the number of effective DOFs in a wireless channel is explored using two co-located six-port antenna arrays. The antenna elements of both arrays closely reproduce the desired characteristics of fundamental electric and magnetic dipoles, which can efficiently extract angle and polarization diversities from the wireless channel. In particular, one of the two array designs is by far the most electrically compact six-port antenna structure in the literature. Analysis of measured channel eigenvalues in a rich multi-path scattering environment shows that six eigenchannels are successfully attained for the purpose of spatial multiplexing. To study the potential of implementing different diversity mechanisms on a practical multi-port antenna, Paper II builds on an existing dielectric resonator antenna (DRA) to provide a compact six-port DRA array that jointly utilizes space, polarization and angle diversities. In order to fully substantiate the practicality of the DRA array for indoor MIMO applications, the compact DRA array together with two reference but much larger arrays were evaluated in an office scenario. The use of the compact DRA array at the receiver is shown to achieve comparable performance to that of the reference monopole array due to the DRA array's rich diversity characteristics. In Paper III, the study of uncoupled matching networks to counteract mutual coupling effects in multi-antenna systems is extended by allowing for unbalanced matching impedances. Numerical studies suggest that the unbalanced matching is especially effective for array topologies whose effective apertures can vary significantly with respect to the propagation channel. Moreover, it is also demonstrated that the unbalanced matching is capable of adapting the radiation patterns of the array elements to the dynamic propagation environment. Paper IV introduces multiplexing efficiency as a performance metric which defines the loss of efficiency in decibel when using a multi-antenna prototype under test to achieve the same multiplexing performance as that of an ideal array in the same propagation environment. Its unique features are both its simplicity and the valuable insights it offers with respect to the performance impacts of different antenna impairments in multi-antenna systems. In Paper V, intrasite cooperation among three 120°-sector, each with a cross-polarized antenna pair, is investigated in a measured urban macrocellular environment. The single-user capacity improvement is found to exceed 40% at the sector edges, where improvements are most needed. In addition, a simple simulation model is developed to analyze the respective impact of antennas and specific propagation mechanisms on the measured cooperative gain

    Optimization of Spectrum Management in Massive Array Antenna Systems with MIMO

    Get PDF
    Fifth generation (5G), is being considered as a revolutionary technology in the telecommunication domain whose the challenges are mainly to achieve signal quality and great ability to work with free spectrum in the millimetre waves. Besides, other important innovations are the introduction of a more current architecture and the use of multiple antennas in transmission and reception. Digital communication using multiple input and multiple output (MIMO) wireless links has recently emerged as one of the most significant technical advances in modern communications. MIMO technology is able to offer a large increase in the capacity of these systems, without requiring a considerable increase in bandwidth or power required for transmission. This dissertation presents an overview of theoretical concepts of MIMO systems. With such a system a spatial diversity gain can be obtained by using space-time codes, which simultaneously exploit the spatial domain and the time domain. SISO, SIMO and MISO systems are differentiated by their channel capacity and their configuration in relation to the number of antennas in the transmitter/receiver. To verify the effectiveness of the MIMO systems a comparison between the capacity of SISO and MIMO systems has been performed using the Shannon’s principles. In the MIMO system some variations in the number of antennas arrays have been considered, and the superiority of transmission gains of the MIMO systems have been demonstrated. Combined with millimetre waves (mmWaves) technology, massive MIMO systems, where the number of antennas in the base station and the number of users are large, is a promising solution. SDR implementations have been performed considering a platform with Matlab code applied to MIMO 2x2 Radio and Universal Software Peripheral Radio (USRP). A detailed study was initially conducted to analyze the architecture of the USRP. Complex structures of MIMO systems can be simplified by using mathematical methods implemented in Matlab for the synchronization of the USRP in the receiver side. SISO transmission and reception techniques have been considered to refine the synchronization (with 16-QAM), thus facilitating the future implementation of the MIMO system. OpenAirInterface has been considered for 4G and 5G implementations of actual mobile radio communication systems. Together with the practical MIMO, this type of solution is the starting point for future hardware building blocks involving massive MIMO systems.A quinta geração (5G) está sendo considerada uma tecnologia revolucionária no setor de telecomunicações, cujos desafios são principalmente a obtenção de qualidade de sinal e grande capacidade de trabalhar com espectro livre nas ondas milimétricas. Além disso, outras inovações importantes são a introdução de uma arquitetura mais atual e o uso de múltiplas antenas em transmissão e recepção. A comunicação digital usando ligaçõe sem fio de múltiplas entradas e múltiplas saídas (MIMO) emergiu recentemente como um dos avanços técnicos mais significativos nas comunicações modernas. A tecnologia MIMO é capaz de oferecer um elevado aumento na capacidade, sem exigir um aumento considerável na largura de banda ou potência transmitida. Esta dissertação apresenta uma visão geral dos conceitos teóricos dos sistemas MIMO. Com esses sistemas, um ganho de diversidade espacial pode ser obtido utilizando códigos espaço-tempo reais. Os sistemas SISO, SIMO e MISO são diferenciados pela capacidade de seus canais e a sua configuração em relação ao número de antenas no emissor/receptor. Para verificar a eficiência dos sistemas MIMO, realizou-se uma comparação entre a capacidade dos sistemas SISO e MIMO utilizado os princípios de Shannon. Nos sistemas MIMO condecideraram-se algumas variações no número de agregados de antenas, e a superioridade dos ganhos de transmissão dos sistemas MIMO foi demonstrada. Combinado com a tecnologia de ondas milimétricas (mmWaves), os sistemas massivos MIMO, onde o número de antenas na estação base e o número de usuários são grandes, são uma solução promissora. As implementações do SDR foram realizadas considerando uma plataforma com código Matlab aplicado aos rádios MIMO 2x2 e Universal Software Peripheral Radio (USRP). Um estudo detalhado foi inicialmente conduzido para analisar a arquitetura da USRP. Estruturas complexas de sistemas MIMO podem ser simplificadas usando métodos matemáticos implementados no Matlab para a sincronização do USRP no lado do receptor. Consideraram-se técnicas de transmissão e recepção SISO para refinar a sincronização (com 16-QAM), facilitando assim a implementação futura do sistema MIMO . Considerou-se o OpenAirInterface para implementações 4G e 5G de sistemas reais de comunicações móveis. Juntamente com o MIMO na pratica, este tipo de solução é o ponto de partida para futuros blocos de construção de hardware envolvendo sistemas MIMO massivos

    Toward Beamfocusing-Aided Near-Field Communications: Research Advances, Potential, and Challenges

    Full text link
    Next-generation mobile networks promise to support high throughput, massive connectivity, and improved energy efficiency. To achieve these ambitious goals, extremely large-scale antenna arrays (ELAAs) and terahertz communications constitute a pair of promising technologies. This will result in future wireless communications occurring in the near-field regions. To accurately portray the channel characteristics of near-field wireless propagation, spherical wavefront-based models are required and present both opportunities as well as challenges. Following the basics of near-field communications (NFC), we contrast it to conventional far-field communications. Moreover, we cover the key challenges of NFC, including its channel modeling and estimation, near-field beamfocusing, as well as hardware design. Our numerical results demonstrate the potential of NFC in improving the spatial multiplexing gain and positioning accuracy. Finally, a suite of open issues are identified for motivating future research.Comment: 8 pages, 5 figures, 1 tabl
    corecore