13,709 research outputs found

    On Sparse Representation in Fourier and Local Bases

    Full text link
    We consider the classical problem of finding the sparse representation of a signal in a pair of bases. When both bases are orthogonal, it is known that the sparse representation is unique when the sparsity KK of the signal satisfies K<1/μ(D)K<1/\mu(D), where μ(D)\mu(D) is the mutual coherence of the dictionary. Furthermore, the sparse representation can be obtained in polynomial time by Basis Pursuit (BP), when K<0.91/μ(D)K<0.91/\mu(D). Therefore, there is a gap between the unicity condition and the one required to use the polynomial-complexity BP formulation. For the case of general dictionaries, it is also well known that finding the sparse representation under the only constraint of unicity is NP-hard. In this paper, we introduce, for the case of Fourier and canonical bases, a polynomial complexity algorithm that finds all the possible KK-sparse representations of a signal under the weaker condition that K<2/μ(D)K<\sqrt{2} /\mu(D). Consequently, when K<1/μ(D)K<1/\mu(D), the proposed algorithm solves the unique sparse representation problem for this structured dictionary in polynomial time. We further show that the same method can be extended to many other pairs of bases, one of which must have local atoms. Examples include the union of Fourier and local Fourier bases, the union of discrete cosine transform and canonical bases, and the union of random Gaussian and canonical bases

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page

    Localized Manifold Harmonics for Spectral Shape Analysis

    Get PDF
    The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications. In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topological structure of the entire manifold. In this paper, we introduce a new framework for local spectral shape analysis. We show how to efficiently construct localized orthogonal bases by solving an optimization problem that in turn can be posed as the eigendecomposition of a new operator obtained by a modification of the standard Laplacian. We study the theoretical and computational aspects of the proposed framework and showcase our new construction on the classical problems of shape approximation and correspondence. We obtain significant improvement compared to classical Laplacian eigenbases as well as other alternatives for constructing localized bases

    Regression with Linear Factored Functions

    Full text link
    Many applications that use empirically estimated functions face a curse of dimensionality, because the integrals over most function classes must be approximated by sampling. This paper introduces a novel regression-algorithm that learns linear factored functions (LFF). This class of functions has structural properties that allow to analytically solve certain integrals and to calculate point-wise products. Applications like belief propagation and reinforcement learning can exploit these properties to break the curse and speed up computation. We derive a regularized greedy optimization scheme, that learns factored basis functions during training. The novel regression algorithm performs competitively to Gaussian processes on benchmark tasks, and the learned LFF functions are with 4-9 factored basis functions on average very compact.Comment: Under review as conference paper at ECML/PKDD 201
    corecore