79,514 research outputs found

    On Source Coding with Coded Side Information for a Binary Source with Binary Side Information

    Get PDF
    The lossless rate region for the coded side information problem is "solved," but its solution is expressed in terms of an auxiliary random variable. As a result, finding the rate region for any fixed example requires an optimization over a family of allowed auxiliary random variables. While intuitive constructions are easy to come by and optimal solutions are known under some special conditions, proving the optimal solution is surprisingly difficult even for examples as basic as a binary source with binary side information. We derive the optimal auxiliary random variables and corresponding achievable rate regions for a family of problems where both the source and side information are binary. Our solution involves first tightening known bounds on the alphabet size of the auxiliary random variable and then optimizing the auxiliary random variable subject to this constraint. The technique used to tighten the bound on the alphabet size applies to a variety of problems beyond the one studied here

    On networks with side information

    Get PDF
    In this paper, we generalize the lossless coded side information problem from the three-node network of Ahlswede and K¨orner to more general network scenarios. We derive inner and outer bounds on the achievable rate region in the general network scenario and show that they are tight for some families of networks. Our approach demonstrates how solutions to canonical source coding problems can be used to derive bounds for more complex networks and reveals an interesting connection between networks with side information, successive refinement, and network coding

    Secure Multiterminal Source Coding with Side Information at the Eavesdropper

    Full text link
    The problem of secure multiterminal source coding with side information at the eavesdropper is investigated. This scenario consists of a main encoder (referred to as Alice) that wishes to compress a single source but simultaneously satisfying the desired requirements on the distortion level at a legitimate receiver (referred to as Bob) and the equivocation rate --average uncertainty-- at an eavesdropper (referred to as Eve). It is further assumed the presence of a (public) rate-limited link between Alice and Bob. In this setting, Eve perfectly observes the information bits sent by Alice to Bob and has also access to a correlated source which can be used as side information. A second encoder (referred to as Charlie) helps Bob in estimating Alice's source by sending a compressed version of its own correlated observation via a (private) rate-limited link, which is only observed by Bob. For instance, the problem at hands can be seen as the unification between the Berger-Tung and the secure source coding setups. Inner and outer bounds on the so called rates-distortion-equivocation region are derived. The inner region turns to be tight for two cases: (i) uncoded side information at Bob and (ii) lossless reconstruction of both sources at Bob --secure distributed lossless compression. Application examples to secure lossy source coding of Gaussian and binary sources in the presence of Gaussian and binary/ternary (resp.) side informations are also considered. Optimal coding schemes are characterized for some cases of interest where the statistical differences between the side information at the decoders and the presence of a non-zero distortion at Bob can be fully exploited to guarantee secrecy.Comment: 26 pages, 16 figures, 2 table
    corecore