6,313 research outputs found

    Computability of probability measures and Martin-Lof randomness over metric spaces

    Get PDF
    In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any computable metric space with a computable probability measure is isomorphic to the Cantor space in a computable and measure-theoretic sense. We show that any computable metric space admits a universal uniform randomness test (without further assumption).Comment: 29 page

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    On the information carried by programs about the objects they compute

    Get PDF
    In computability theory and computable analysis, finite programs can compute infinite objects. Presenting a computable object via any program for it, provides at least as much information as presenting the object itself, written on an infinite tape. What additional information do programs provide? We characterize this additional information to be any upper bound on the Kolmogorov complexity of the object. Hence we identify the exact relationship between Markov-computability and Type-2-computability. We then use this relationship to obtain several results characterizing the computational and topological structure of Markov-semidecidable sets

    Computing the speed of convergence of ergodic averages and pseudorandom points in computable dynamical systems

    Get PDF
    A pseudorandom point in an ergodic dynamical system over a computable metric space is a point which is computable but its dynamics has the same statistical behavior as a typical point of the system. It was proved in [Avigad et al. 2010, Local stability of ergodic averages] that in a system whose dynamics is computable the ergodic averages of computable observables converge effectively. We give an alternative, simpler proof of this result. This implies that if also the invariant measure is computable then the pseudorandom points are a set which is dense (hence nonempty) on the support of the invariant measure

    Computing Solution Operators of Boundary-value Problems for Some Linear Hyperbolic Systems of PDEs

    Full text link
    We discuss possibilities of application of Numerical Analysis methods to proving computability, in the sense of the TTE approach, of solution operators of boundary-value problems for systems of PDEs. We prove computability of the solution operator for a symmetric hyperbolic system with computable real coefficients and dissipative boundary conditions, and of the Cauchy problem for the same system (we also prove computable dependence on the coefficients) in a cube Q⊆RmQ\subseteq\mathbb R^m. Such systems describe a wide variety of physical processes (e.g. elasticity, acoustics, Maxwell equations). Moreover, many boundary-value problems for the wave equation also can be reduced to this case, thus we partially answer a question raised in Weihrauch and Zhong (2002). Compared with most of other existing methods of proving computability for PDEs, this method does not require existence of explicit solution formulas and is thus applicable to a broader class of (systems of) equations.Comment: 31 page
    • …
    corecore