4 research outputs found

    Causal Feature Selection via Orthogonal Search

    Full text link
    The problem of inferring the direct causal parents of a response variable among a large set of explanatory variables is of high practical importance in many disciplines. Recent work in the field of causal discovery exploits invariance properties of models across different experimental conditions for detecting direct causal links. However, these approaches generally do not scale well with the number of explanatory variables, are difficult to extend to nonlinear relationships, and require data across different experiments. Inspired by {\em Debiased} machine learning methods, we study a one-vs.-the-rest feature selection approach to discover the direct causal parent of the response. We propose an algorithm that works for purely observational data, while also offering theoretical guarantees, including the case of partially nonlinear relationships. Requiring only one estimation for each variable, we can apply our approach even to large graphs, demonstrating significant improvements compared to established approaches

    Separators and Adjustment Sets in Causal Graphs: Complete Criteria and an Algorithmic Framework

    Full text link
    Principled reasoning about the identifiability of causal effects from non-experimental data is an important application of graphical causal models. This paper focuses on effects that are identifiable by covariate adjustment, a commonly used estimation approach. We present an algorithmic framework for efficiently testing, constructing, and enumerating mm-separators in ancestral graphs (AGs), a class of graphical causal models that can represent uncertainty about the presence of latent confounders. Furthermore, we prove a reduction from causal effect identification by covariate adjustment to mm-separation in a subgraph for directed acyclic graphs (DAGs) and maximal ancestral graphs (MAGs). Jointly, these results yield constructive criteria that characterize all adjustment sets as well as all minimal and minimum adjustment sets for identification of a desired causal effect with multivariate exposures and outcomes in the presence of latent confounding. Our results extend several existing solutions for special cases of these problems. Our efficient algorithms allowed us to empirically quantify the identifiability gap between covariate adjustment and the do-calculus in random DAGs and MAGs, covering a wide range of scenarios. Implementations of our algorithms are provided in the R package dagitty.Comment: 52 pages, 20 figures, 12 table

    On Searching for Generalized Instrumental Variables

    No full text
    Abstract Instrumental Variables are a popular way to identify the direct causal effect of a random variable X on a variable Y . Often no single instrumental variable exists, although it is still possible to find a set of generalized instrumental variables (GIVs) and identify the causal effect of all these variables at once. Till now it was not known how to find GIVs systematically or even test efficiently, if given variables satisfy GIV conditions. We provide fast algorithms for searching and testing restricted cases of GIVs. However, we prove that in the most general case it is NP-hard to verify if given variables fulfill the conditions of a general instrumental set
    corecore