5 research outputs found

    On Sampling Focal Length Values to Solve the Absolute Pose Problem

    No full text
    Abstract. Estimating the absolute pose of a camera relative to a 3D representation of a scene is a fundamental step in many geometric Com-puter Vision applications. When the camera is calibrated, the pose can be computed very efficiently. If the calibration is unknown, the prob-lem becomes much harder, resulting in slower solvers or solvers requiring more samples and thus significantly longer run-times for RANSAC. In this paper, we challenge the notion that using minimal solvers is always optimal and propose to compute the pose for a camera with unknown focal length by randomly sampling a focal length value and using an ef-ficient pose solver for the now calibrated camera. Our main contribution is a novel sampling scheme that enables us to guide the sampling process towards promising focal length values and avoids considering all possi-ble values once a good pose is found. The resulting RANSAC variant is significantly faster than current state-of-the-art pose solvers, especially for low inlier ratios, while achieving a similar or better pose accuracy

    Efficient Image-Based Localization Using Context

    Get PDF
    Image-Based Localization (IBL) is the problem of computing the position and orientation of a camera with respect to a geometric representation of the scene. A fundamental building block of IBL is searching the space of a saved 3D representation of the scene for correspondences to a query image. The robustness and accuracy of the IBL approaches in the literature are not objective and quantifiable. First, this thesis presents a detailed description and study of three different 3D modeling packages based on SFM to reconstruct a 3D map of an environment. The packages tested are VSFM, Bundler and PTAM. The objective is to assess the mapping ability of each of the techniques and choose the best one to use for reconstructing the IBL 3D map. The study results show that image matching which is the bottleneck of SFM, SLAM and IBL plays the major role in favour of VSFM. This will result in using wrong matches in building the 3D map. It is crucial for IBL to choose the software that provides the best quality of points, \textit{i.e.} the largest number of correct 3D points. For this reason, VSFM will be chosen to reconstruct the 3D maps for IBL. Second, this work presents a comparative study of the main approaches, namely Brute Force Matching, Tree-Based Approach, Embedded Ferns Classification, ACG Localizer, Keyframe Approach, Decision Forest, Worldwide Pose Estimation and MPEG Search Space Reduction. The objective of the comparative analysis was to first uncover the specifics of each of these techniques and thereby understand the advantages and disadvantages of each of them. The testing was performed on Dubrovnik Dataset where the localization is determined with respect to a 3D cloud map which was computed using a Structure-from-Motion approach. The study results show that the current state of the art IBL solutions still face challenges in search space reduction, feature matching, clustering, and the quality of the solution is not consistent across all query images. Third, this work addresses the search space problem in order to solve the IBL problem. The Gist-based Search Space Reduction (GSSR), an efficient alternative to the available search space solutions, is proposed. It relies on GIST descriptors to considerably reduce search space and computational time, while at the same exceeding the state of the art in localization accuracy. Experiments on the 7 scenes datasets of Microsoft Research reveal considerable speedups for GSSR versus tree-based approaches, reaching a 4 times faster speed for the Heads dataset, and reducing the search space by an average of 92% while maintaining a better accuracy

    Modeling and Calibrating the Distributed Camera

    Get PDF
    Structure-from-Motion (SfM) is a powerful tool for computing 3D reconstructions from images of a scene and has wide applications in computer vision, scene recognition, and augmented and virtual reality. Standard SfM pipelines make strict assumptions about the capturing devices in order to simplify the process for estimating camera geometry and 3D structure. Specifically, most methods require monocular cameras with known focal length calibration. When considering large-scale SfM from internet photo collections, EXIF calibrations cannot be used reliably. Further, the requirement of single camera systems limits the scalability of SfM. This thesis proposes to remove these constraints by instead considering the collection of cameras as a distributed camera that encapsulates the image and geometric information of all cameras simultaneously. First, I provide full generalizations to the relative camera pose and absolute camera pose problems. These generalizations are more expressive and extend the traditional single-camera problems to distributed cameras, forming the basis for a novel hierarchical SfM pipeline that exhibits state-of-the-art performance on large-scale datasets. Second, I describe two efficient methods for estimating camera focal lengths for the distributed camera when calibration is not available. Finally, I show how removing these constraints enables a simpler, more scalable SfM pipeline that is capable of handling uncalibrated cameras at scale
    corecore