241,195 research outputs found

    Set-valued mapping and Rough Probability

    Full text link
    In 1982, the theory of rough sets proposed by Pawlak and in 2013, Luay concerned a rough probability by using the notion of Topology. In this paper, we study the rough probability in the stochastic approximation spaces by using set-valued mapping and obtain results on rough expectation, and rough variance.Comment: 9 page

    Global existence for rough differential equations under linear growth conditions

    Get PDF
    We prove existence of global solutions for differential equations driven by a geometric rough path under the condition that the vector fields have linear growth. We show by an explicit counter-example that the linear growth condition is not sufficient if the driving rough path is not geometric. This settle a long-standing open question in the theory of rough paths. So in the geometric setting we recover the usual sufficient condition for differential equation. The proof rely on a simple mapping of the differential equation from the Euclidean space to a manifold to obtain a rough differential equation with bounded coefficients.Comment: 20 page

    Laplacian transfer across a rough interface: Numerical resolution in the conformal plane

    Full text link
    We use a conformal mapping technique to study the Laplacian transfer across a rough interface. Natural Dirichlet or Von Neumann boundary condition are simply read by the conformal map. Mixed boundary condition, albeit being more complex can be efficiently treated in the conformal plane. We show in particular that an expansion of the potential on a basis of evanescent waves in the conformal plane allows to write a well-conditioned 1D linear system. These general principle are illustrated by numerical results on rough interfaces

    Conformal Mapping on Rough Boundaries II: Applications to bi-harmonic problems

    Full text link
    We use a conformal mapping method introduced in a companion paper to study the properties of bi-harmonic fields in the vicinity of rough boundaries. We focus our analysis on two different situations where such bi-harmonic problems are encountered: a Stokes flow near a rough wall and the stress distribution on the rough interface of a material in uni-axial tension. We perform a complete numerical solution of these two-dimensional problems for any univalued rough surfaces. We present results for sinusoidal and self-affine surface whose slope can locally reach 2.5. Beyond the numerical solution we present perturbative solutions of these problems. We show in particular that at first order in roughness amplitude, the surface stress of a material in uni-axial tension can be directly obtained from the Hilbert transform of the local slope. In case of self-affine surfaces, we show that the stress distribution presents, for large stresses, a power law tail whose exponent continuously depends on the roughness amplitude

    Conformal Mapping on Rough Boundaries I: Applications to harmonic problems

    Full text link
    The aim of this study is to analyze the properties of harmonic fields in the vicinity of rough boundaries where either a constant potential or a zero flux is imposed, while a constant field is prescribed at an infinite distance from this boundary. We introduce a conformal mapping technique that is tailored to this problem in two dimensions. An efficient algorithm is introduced to compute the conformal map for arbitrarily chosen boundaries. Harmonic fields can then simply be read from the conformal map. We discuss applications to "equivalent" smooth interfaces. We study the correlations between the topography and the field at the surface. Finally we apply the conformal map to the computation of inhomogeneous harmonic fields such as the derivation of Green function for localized flux on the surface of a rough boundary

    Emergence of Quantum Ergodicity in Rough Billiards

    Full text link
    By analytical mapping of the eigenvalue problem in rough billiards on to a band random matrix model a new regime of Wigner ergodicity is found. There the eigenstates are extended over the whole energy surface but have a strongly peaked structure. The results of numerical simulations and implications for level statistics are also discussed.Comment: revtex, 4 pages, 4 figure

    On the validity of the method of reduction of dimensionality: area of contact, average interfacial separation and contact stiffness

    Full text link
    It has recently been suggested that many contact mechanics problems between solids can be accurately studied by mapping the problem on an effective one dimensional (1D) elastic foundation model. Using this 1D mapping we calculate the contact area and the average interfacial separation between elastic solids with nominally flat but randomly rough surfaces. We show, by comparison to exact numerical results, that the 1D mapping method fails even qualitatively. We also calculate the normal interfacial stiffness KK and compare it with the result of an analytical study. We attribute the failure of the elastic foundation model to the neglect of the long-range elastic coupling between the asperity contact regions.Comment: 5 pages, 4 figures, 29 reference

    On rough isometries of Poisson processes on the line

    Full text link
    Intuitively, two metric spaces are rough isometric (or quasi-isometric) if their large-scale metric structure is the same, ignoring fine details. This concept has proven fundamental in the geometric study of groups. Ab\'{e}rt, and later Szegedy and Benjamini, have posed several probabilistic questions concerning this concept. In this article, we consider one of the simplest of these: are two independent Poisson point processes on the line rough isometric almost surely? Szegedy conjectured that the answer is positive. Benjamini proposed to consider a quantitative version which roughly states the following: given two independent percolations on N\mathbb {N}, for which constants are the first nn points of the first percolation rough isometric to an initial segment of the second, with the first point mapping to the first point and with probability uniformly bounded from below? We prove that the original question is equivalent to proving that absolute constants are possible in this quantitative version. We then make some progress toward the conjecture by showing that constants of order logn\sqrt{\log n} suffice in the quantitative version. This is the first result to improve upon the trivial construction which has constants of order logn\log n. Furthermore, the rough isometry we construct is (weakly) monotone and we include a discussion of monotone rough isometries, their properties and an interesting lattice structure inherent in them.Comment: Published in at http://dx.doi.org/10.1214/09-AAP624 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore