4,240 research outputs found

    DEEP FULLY RESIDUAL CONVOLUTIONAL NEURAL NETWORK FOR SEMANTIC IMAGE SEGMENTATION

    Get PDF
    Department of Computer Science and EngineeringThe goal of semantic image segmentation is to partition the pixels of an image into semantically meaningful parts and classifying those parts according to a predefined label set. Although object recognition models achieved remarkable performance recently and they even surpass human???s ability to recognize objects, but semantic segmentation models are still behind. One of the reason that makes semantic segmentation relatively a hard problem is the image understanding at pixel level by considering global context as oppose to object recognition. One other challenge is transferring the knowledge of an object recognition model for the task of semantic segmentation. In this thesis, we are delineating some of the main challenges we faced approaching semantic image segmentation with machine learning algorithms. Our main focus was how we can use deep learning algorithms for this task since they require the least amount of feature engineering and also it was shown that such models can be applied to large scale datasets and exhibit remarkable performance. More precisely, we worked on a variation of convolutional neural networks (CNN) suitable for the semantic segmentation task. We proposed a model called deep fully residual convolutional networks (DFRCN) to tackle this problem. Utilizing residual learning makes training of deep models feasible which ultimately leads to having a rich powerful visual representation. Our model also benefits from skip-connections which ease the propagation of information from the encoder module to the decoder module. This would enable our model to have less parameters in the decoder module while it also achieves better performance. We also benchmarked the effective variation of the proposed model on a semantic segmentation benchmark. We first make a thorough review of current high-performance models and the problems one might face when trying to replicate such models which mainly arose from the lack of sufficient provided information. Then, we describe our own novel method which we called deep fully residual convolutional network (DFRCN). We showed that our method exhibits state of the art performance on a challenging benchmark for aerial image segmentation.clos

    In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

    Full text link
    In this work we present In-Place Activated Batch Normalization (InPlace-ABN) - a novel approach to drastically reduce the training memory footprint of modern deep neural networks in a computationally efficient way. Our solution substitutes the conventionally used succession of BatchNorm + Activation layers with a single plugin layer, hence avoiding invasive framework surgery while providing straightforward applicability for existing deep learning frameworks. We obtain memory savings of up to 50% by dropping intermediate results and by recovering required information during the backward pass through the inversion of stored forward results, with only minor increase (0.8-2%) in computation time. Also, we demonstrate how frequently used checkpointing approaches can be made computationally as efficient as InPlace-ABN. In our experiments on image classification, we demonstrate on-par results on ImageNet-1k with state-of-the-art approaches. On the memory-demanding task of semantic segmentation, we report results for COCO-Stuff, Cityscapes and Mapillary Vistas, obtaining new state-of-the-art results on the latter without additional training data but in a single-scale and -model scenario. Code can be found at https://github.com/mapillary/inplace_abn

    Deep Pyramidal Residual Networks

    Full text link
    Deep convolutional neural networks (DCNNs) have shown remarkable performance in image classification tasks in recent years. Generally, deep neural network architectures are stacks consisting of a large number of convolutional layers, and they perform downsampling along the spatial dimension via pooling to reduce memory usage. Concurrently, the feature map dimension (i.e., the number of channels) is sharply increased at downsampling locations, which is essential to ensure effective performance because it increases the diversity of high-level attributes. This also applies to residual networks and is very closely related to their performance. In this research, instead of sharply increasing the feature map dimension at units that perform downsampling, we gradually increase the feature map dimension at all units to involve as many locations as possible. This design, which is discussed in depth together with our new insights, has proven to be an effective means of improving generalization ability. Furthermore, we propose a novel residual unit capable of further improving the classification accuracy with our new network architecture. Experiments on benchmark CIFAR-10, CIFAR-100, and ImageNet datasets have shown that our network architecture has superior generalization ability compared to the original residual networks. Code is available at https://github.com/jhkim89/PyramidNet}Comment: Accepted to CVPR 201

    Customized CNN Model for Multiple Illness Identification in Rice and Maize

    Get PDF
    Crop diseases imperil global food security and economies, demanding early detection and effective management. Convolutional Neural Networks (CNNs), particularly in rice and maize leaf disease classification, have gained traction due to their automatic feature extraction capabilities. CNN models eliminate manual feature extraction, enabling precise disease diagnosis based on learned features. Researchers have rapidly advanced these models, achieving promising results. Leaf disease characteristics like color changes, texture variations, and lesion appearance have been identified as useful for automated diagnosis using machine learning. Developing CNN models involves crucial stages: dataset preparation, architecture selection, hyperparameter tuning, and model training and evaluation. Diverse and accurately annotated datasets are pivotal, and appropriate CNN architecture selection, such as ResNet101 and XceptionNet, ensures optimal performance. These architectures' pre-training on vast image datasets enhances feature extraction. Hyperparameter tuning fine-tunes the model, and training and evaluation gauge its precision. CNN models hold potential to enhance rice and maize productivity and global food security by effectively detecting and managing diseases
    corecore