4 research outputs found

    Equivalence of Systematic Linear Data Structures and Matrix Rigidity

    Get PDF
    Recently, Dvir, Golovnev, and Weinstein have shown that sufficiently strong lower bounds for linear data structures would imply new bounds for rigid matrices. However, their result utilizes an algorithm that requires an NPNP oracle, and hence, the rigid matrices are not explicit. In this work, we derive an equivalence between rigidity and the systematic linear model of data structures. For the nn-dimensional inner product problem with mm queries, we prove that lower bounds on the query time imply rigidity lower bounds for the query set itself. In particular, an explicit lower bound of ω(nrlogm)\omega\left(\frac{n}{r}\log m\right) for rr redundant storage bits would yield better rigidity parameters than the best bounds due to Alon, Panigrahy, and Yekhanin. We also prove a converse result, showing that rigid matrices directly correspond to hard query sets for the systematic linear model. As an application, we prove that the set of vectors obtained from rank one binary matrices is rigid with parameters matching the known results for explicit sets. This implies that the vector-matrix-vector problem requires query time Ω(n3/2/r)\Omega(n^{3/2}/r) for redundancy rnr \geq \sqrt{n} in the systematic linear model, improving a result of Chakraborty, Kamma, and Larsen. Finally, we prove a cell probe lower bound for the vector-matrix-vector problem in the high error regime, improving a result of Chattopadhyay, Kouck\'{y}, Loff, and Mukhopadhyay.Comment: 23 pages, 1 tabl

    Kolmogorov Width of Discrete Linear Spaces: an Approach to Matrix Rigidity

    Get PDF
    A square matrix V is called rigid if every matrix V\u27 obtained by altering a small number of entries of VV has sufficiently high rank. While random matrices are rigid with high probability, no explicit constructions of rigid matrices are known to date. Obtaining such explicit matrices would have major implications in computational complexity theory. One approach to establishing rigidity of a matrix V is to come up with a property that is satisfied by any collection of vectors arising from a low-dimensional space, but is not satisfied by the rows of V even after alterations. In this paper we propose such a candidate property that has the potential of establishing rigidity of combinatorial design matrices over the field F_2. Stated informally, we conjecture that under a suitable embedding of F_2^n into R^n, vectors arising from a low dimensional F_2-linear space always have somewhat small Kolmogorov width, i.e., admit a non-trivial simultaneous approximation by a low dimensional Euclidean space. This implies rigidity of combinatorial designs, as their rows do not admit such an approximation even after alterations. Our main technical contribution is a collection of results establishing weaker forms and special cases of the conjecture above

    Near-Optimal Cayley Expanders for Abelian Groups

    Get PDF
    We give an efficient deterministic algorithm that outputs an expanding generating set for any finite abelian group. The size of the generating set is close to the randomized construction of Alon and Roichman [Alon and Roichman, 1994], improving upon various deterministic constructions in both the dependence on the dimension and the spectral gap. By obtaining optimal dependence on the dimension we resolve a conjecture of Azar, Motwani, and Naor [Azar et al., 1998] in the affirmative. Our technique is an extension of the bias amplification technique of Ta-Shma [Ta-Shma, 2017], who used random walks on expanders to obtain expanding generating sets over the additive group of ???. As a consequence, we obtain (i) randomness-efficient constructions of almost k-wise independent variables, (ii) a faster deterministic algorithm for the Remote Point Problem, (iii) randomness-efficient low-degree tests, and (iv) randomness-efficient verification of matrix multiplication

    On Rigid Matrices and U-Polynomials

    No full text
    We introduce a class of polynomials, which we call U-polynomials and show that the problem of explicitly constructing a rigid matrix can be reduced to the problem of explicitly constructing a small hitting set for this class. We prove that small-bias sets are hitting sets for the class of U-polynomials, though their size is larger than desired. Furthermore, we give two alternative proofs for the fact that small-bias sets induce rigid matrices. Finally, we construct rigid matrices from unbalanced expanders, with essentially the same size as the construction via small-bias sets
    corecore