98,930 research outputs found

    Resolution Trees with Lemmas: Resolution Refinements that Characterize DLL Algorithms with Clause Learning

    Full text link
    Resolution refinements called w-resolution trees with lemmas (WRTL) and with input lemmas (WRTI) are introduced. Dag-like resolution is equivalent to both WRTL and WRTI when there is no regularity condition. For regular proofs, an exponential separation between regular dag-like resolution and both regular WRTL and regular WRTI is given. It is proved that DLL proof search algorithms that use clause learning based on unit propagation can be polynomially simulated by regular WRTI. More generally, non-greedy DLL algorithms with learning by unit propagation are equivalent to regular WRTI. A general form of clause learning, called DLL-Learn, is defined that is equivalent to regular WRTL. A variable extension method is used to give simulations of resolution by regular WRTI, using a simplified form of proof trace extensions. DLL-Learn and non-greedy DLL algorithms with learning by unit propagation can use variable extensions to simulate general resolution without doing restarts. Finally, an exponential lower bound for WRTL where the lemmas are restricted to short clauses is shown

    Short Propositional Refutations for Dense Random 3CNF Formulas

    Full text link
    Random 3CNF formulas constitute an important distribution for measuring the average-case behavior of propositional proof systems. Lower bounds for random 3CNF refutations in many propositional proof systems are known. Most notably are the exponential-size resolution refutation lower bounds for random 3CNF formulas with Ω(n1.5ϵ)\Omega(n^{1.5-\epsilon}) clauses [Chvatal and Szemeredi (1988), Ben-Sasson and Wigderson (2001)]. On the other hand, the only known non-trivial upper bound on the size of random 3CNF refutations in a non-abstract propositional proof system is for resolution with Ω(n2/logn)\Omega(n^{2}/\log n) clauses, shown by Beame et al. (2002). In this paper we show that already standard propositional proof systems, within the hierarchy of Frege proofs, admit short refutations for random 3CNF formulas, for sufficiently large clause-to-variable ratio. Specifically, we demonstrate polynomial-size propositional refutations whose lines are TC0TC^0 formulas (i.e., TC0TC^0-Frege proofs) for random 3CNF formulas with n n variables and Ω(n1.4) \Omega(n^{1.4}) clauses. The idea is based on demonstrating efficient propositional correctness proofs of the random 3CNF unsatisfiability witnesses given by Feige, Kim and Ofek (2006). Since the soundness of these witnesses is verified using spectral techniques, we develop an appropriate way to reason about eigenvectors in propositional systems. To carry out the full argument we work inside weak formal systems of arithmetic and use a general translation scheme to propositional proofs.Comment: 62 pages; improved introduction and abstract, and a changed title. Fixed some typo

    Automating Resolution is NP-Hard

    Get PDF
    We show that the problem of finding a Resolution refutation that is at most polynomially longer than a shortest one is NP-hard. In the parlance of proof complexity, Resolution is not automatizable unless P = NP. Indeed, we show it is NP-hard to distinguish between formulas that have Resolution refutations of polynomial length and those that do not have subexponential length refutations. This also implies that Resolution is not automatizable in subexponential time or quasi-polynomial time unless NP is included in SUBEXP or QP, respectively

    Narrow proofs may be maximally long

    Get PDF
    We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n(Omega(w)). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n(O(w)) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution and Sherali-Adams, implying that the corresponding size upper bounds in terms of degree and rank are tight as well. The lower bound does not extend all the way to Lasserre, however, since we show that there the formulas we study have proofs of constant rank and size polynomial in both n and w.Peer ReviewedPostprint (author's final draft

    Narrow Proofs May Be Maximally Long

    Get PDF
    We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n^Omega(w). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n^O(w) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution (PCR) and Sherali-Adams, implying that the corresponding size upper bounds in terms of degree and rank are tight as well. Our results do not extend all the way to Lasserre, however, where the formulas we study have proofs of constant rank and size polynomial in both n and w

    On SAT representations of XOR constraints

    Full text link
    We study the representation of systems S of linear equations over the two-element field (aka xor- or parity-constraints) via conjunctive normal forms F (boolean clause-sets). First we consider the problem of finding an "arc-consistent" representation ("AC"), meaning that unit-clause propagation will fix all forced assignments for all possible instantiations of the xor-variables. Our main negative result is that there is no polysize AC-representation in general. On the positive side we show that finding such an AC-representation is fixed-parameter tractable (fpt) in the number of equations. Then we turn to a stronger criterion of representation, namely propagation completeness ("PC") --- while AC only covers the variables of S, now all the variables in F (the variables in S plus auxiliary variables) are considered for PC. We show that the standard translation actually yields a PC representation for one equation, but fails so for two equations (in fact arbitrarily badly). We show that with a more intelligent translation we can also easily compute a translation to PC for two equations. We conjecture that computing a representation in PC is fpt in the number of equations.Comment: 39 pages; 2nd v. improved handling of acyclic systems, free-standing proof of the transformation from AC-representations to monotone circuits, improved wording and literature review; 3rd v. updated literature, strengthened treatment of monotonisation, improved discussions; 4th v. update of literature, discussions and formulations, more details and examples; conference v. to appear LATA 201
    corecore