38,734 research outputs found

    Dynamic Physiological Partitioning on a Shared-nothing Database Cluster

    Full text link
    Traditional DBMS servers are usually over-provisioned for most of their daily workloads and, because they do not show good-enough energy proportionality, waste a lot of energy while underutilized. A cluster of small (wimpy) servers, where its size can be dynamically adjusted to the current workload, offers better energy characteristics for these workloads. Yet, data migration, necessary to balance utilization among the nodes, is a non-trivial and time-consuming task that may consume the energy saved. For this reason, a sophisticated and easy to adjust partitioning scheme fostering dynamic reorganization is needed. In this paper, we adapt a technique originally created for SMP systems, called physiological partitioning, to distribute data among nodes, that allows to easily repartition data without interrupting transactions. We dynamically partition DB tables based on the nodes' utilization and given energy constraints and compare our approach with physical partitioning and logical partitioning methods. To quantify possible energy saving and its conceivable drawback on query runtimes, we evaluate our implementation on an experimental cluster and compare the results w.r.t. performance and energy consumption. Depending on the workload, we can substantially save energy without sacrificing too much performance

    Service and device discovery of nodes in a wireless sensor network

    Get PDF
    Emerging wireless communication standards and more capable sensors and actuators have pushed further development of wireless sensor networks. Deploying a large number of sensor\ud nodes requires a high-level framework enabling the devices to present themselves and the resources they hold. The device and the resources can be described as services, and in this paper, we review a number of well-known service discovery protocols. Bonjour stands out with its auto-configuration, distributed architecture, and sharing of resources. We also present a lightweight implementation in order to demonstrate that an emerging standards-based device and service discovery protocol can actually be deployed on small wireless sensor nodes

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort
    • …
    corecore