1,705 research outputs found

    Achievable Sum Rates of Half- and Full-Duplex Bidirectional OFDM Communication Links

    Full text link
    While full-duplex (FD) transmission has the potential to double the system capacity, its substantial benefit can be offset by the self-interference (SI) and non-ideality of practical transceivers. In this paper, we investigate the achievable sum rates (ASRs) of half-duplex (HD) and FD transmissions with orthogonal frequency division multiplexing (OFDM), where the non-ideality is taken into consideration. Four transmission strategies are considered, namely HD with uniform power allocation (UPA), HD with non-UPA (NUPA), FD with UPA, and FD with NUPA. For each of the four transmission strategies, an optimization problem is formulated to maximize its ASR, and a (suboptimal/optimal) solution with low complexity is accordingly derived. Performance evaluations and comparisons are conducted for three typical channels, namely symmetric frequency-flat/selective and asymmetric frequency-selective channels. Results show that the proposed solutions for both HD and FD transmissions can achieve near optimal performances. For FD transmissions, the optimal solution can be obtained under typical conditions. In addition, several observations are made on the ASR performances of HD and FD transmissions.Comment: To appear in IEEE TVT. This paper solves the problem of sum achievable rate optimization of bidirectional FD OFDM link, where joint time and power allocation is involve

    All-Digital Self-interference Cancellation Technique for Full-duplex Systems

    Full text link
    Full-duplex systems are expected to double the spectral efficiency compared to conventional half-duplex systems if the self-interference signal can be significantly mitigated. Digital cancellation is one of the lowest complexity self-interference cancellation techniques in full-duplex systems. However, its mitigation capability is very limited, mainly due to transmitter and receiver circuit's impairments. In this paper, we propose a novel digital self-interference cancellation technique for full-duplex systems. The proposed technique is shown to significantly mitigate the self-interference signal as well as the associated transmitter and receiver impairments. In the proposed technique, an auxiliary receiver chain is used to obtain a digital-domain copy of the transmitted Radio Frequency (RF) self-interference signal. The self-interference copy is then used in the digital-domain to cancel out both the self-interference signal and the associated impairments. Furthermore, to alleviate the receiver phase noise effect, a common oscillator is shared between the auxiliary and ordinary receiver chains. A thorough analytical and numerical analysis for the effect of the transmitter and receiver impairments on the cancellation capability of the proposed technique is presented. Finally, the overall performance is numerically investigated showing that using the proposed technique, the self-interference signal could be mitigated to ~3dB higher than the receiver noise floor, which results in up to 76% rate improvement compared to conventional half-duplex systems at 20dBm transmit power values.Comment: Submitted to IEEE Transactions on Wireless Communication

    Hardware Impairments Aware Transceiver Design for Bidirectional Full-Duplex MIMO OFDM Systems

    Full text link
    In this paper we address the linear precoding and decoding design problem for a bidirectional orthogonal frequencydivision multiplexing (OFDM) communication system, between two multiple-input multiple-output (MIMO) full-duplex (FD) nodes. The effects of hardware distortion as well as the channel state information error are taken into account. In the first step, we transform the available time-domain characterization of the hardware distortions for FD MIMO transceivers to the frequency domain, via a linear Fourier transformation. As a result, the explicit impact of hardware inaccuracies on the residual selfinterference (RSI) and inter-carrier leakage (ICL) is formulated in relation to the intended transmit/received signals. Afterwards, linear precoding and decoding designs are proposed to enhance the system performance following the minimum-mean-squarederror (MMSE) and sum rate maximization strategies, assuming the availability of perfect or erroneous CSI. The proposed designs are based on the application of alternating optimization over the system parameters, leading to a necessary convergence. Numerical results indicate that the application of a distortionaware design is essential for a system with a high hardware distortion, or for a system with a low thermal noise variance.Comment: Submitted to IEEE for publicatio
    • …
    corecore