18 research outputs found

    On Random Graph Homomorphisms Into Z

    Get PDF
    Given a bipartite connected finite graph G=(V, E) and a vertex v0∈V, we consider a uniform probability measure on the set of graph homomorphisms f: V→Z satisfying f(v0)=0. This measure can be viewed as a G-indexed random walk on Z, generalizing both the usual time-indexed random walk and tree-indexed random walk. Several general inequalities for the G-indexed random walk are derived, including an upper bound on fluctuations implying that the distance d(f(u), f(v)) between f(u) and f(v) is stochastically dominated by the distance to 0 of a simple random walk on Z having run for d(u, v) steps. Various special cases are studied. For instance, when G is an n-level regular tree with all vertices on the last level wired to an additional single vertex, we show that the expected range of the walk is O(log n). This result can also be rephrased as a statement about conditional branching random walk. To prove it, a power-type Pascal triangle is introduced and exploited

    Random Graph-Homomorphisms and Logarithmic Degree

    Get PDF
    A graph homomorphism between two graphs is a map from the vertex set of one graph to the vertex set of the other graph, that maps edges to edges. In this note we study the range of a uniformly chosen homomorphism from a graph G to the infinite line Z. It is shown that if the maximal degree of G is `sub-logarithmic', then the range of such a homomorphism is super-constant. Furthermore, some examples are provided, suggesting that perhaps for graphs with super-logarithmic degree, the range of a typical homomorphism is bounded. In particular, a sharp transition is shown for a specific family of graphs C_{n,k} (which is the tensor product of the n-cycle and a complete graph, with self-loops, of size k). That is, given any function psi(n) tending to infinity, the range of a typical homomorphism of C_{n,k} is super-constant for k = 2 log(n) - psi(n), and is 3 for k = 2 log(n) + psi(n)

    H-coloring Tori

    Get PDF
    For graphs G and H, an H-coloring of G is a function from the vertices of G to the vertices of H that preserves adjacency. H-colorings encode graph theory notions such as independent sets and proper colorings, and are a natural setting for the study of hard-constraint models in statistical physics. We study the set of H-colorings of the even discrete torus View the MathML source, the graph on vertex set {0,…,m−1}d (m even) with two strings adjacent if they differ by 1 (mod m) on one coordinate and agree on all others. This is a bipartite graph, with bipartition classes E and O. In the case m=2 the even discrete torus is the discrete hypercube or Hamming cube Qd, the usual nearest neighbor graph on {0,1}d. We obtain, for any H and fixed m, a structural characterization of the space of H-colorings of View the MathML source. We show that it may be partitioned into an exceptional subset of negligible size (as d grows) and a collection of subsets indexed by certain pairs (A,B)∈V(H)2, with each H-coloring in the subset indexed by (A,B) having all but a vanishing proportion of vertices from E mapped to vertices from A, and all but a vanishing proportion of vertices from O mapped to vertices from B. This implies a long-range correlation phenomenon for uniformly chosen H-colorings of View the MathML source with m fixed and d growing. The special pairs (A,B)∈V(H)2 are characterized by every vertex in A being adjacent to every vertex in B, and having |A||B| maximal subject to this condition. Our main technical result is an upper bound on the probability, for an arbitrary edge uv of View the MathML source, that in a uniformly chosen H-coloring f of View the MathML source the pair View the MathML source is not one of these special pairs (where N⋅ indicates neighborhood). Our proof proceeds through an analysis of the entropy of f, and extends an approach of Kahn, who had considered the case of m=2 and H a doubly infinite path. All our results generalize to a natural weighted model of H-colorings
    corecore