24 research outputs found

    On radio access network slicing from a radio resource management perspective

    Get PDF
    Network slicing is a fundamental capability for future 5G networks to properly support current and envisioned future application scenarios. Network slicing facilitates a cost-effective deployment and operation of multiple logical networks over a common physical network infrastructure such that each network is customized to best serve the needs of specific applications (e.g., mobile broadband, Internet of Things applications) and/or communications service providers (e.g., special purpose service providers for different sectors such as public safety, utilities, smart city, and automobiles). Slicing a RAN becomes particularly challenging due to the inherently shared nature of the radio channel and the potential influence that any transmitter may have on any receiver. In this respect, this article analyzes the RAN slicing problem in a multi-cell network in relation to the RRM functionalities that can be used as a support for splitting the radio resources among the RAN slices. Four different RAN slicing approaches are presented and compared from different perspectives, such as the granularity in the assignment of radio resources and the degrees of isolation and customization.Peer ReviewedPostprint (author's final draft

    Enabling RAN Slicing Through Carrier Aggregation in mmWave Cellular Networks

    Full text link
    The ever increasing number of connected devices and of new and heterogeneous mobile use cases implies that 5G cellular systems will face demanding technical challenges. For example, Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) scenarios present orthogonal Quality of Service (QoS) requirements that 5G aims to satisfy with a unified Radio Access Network (RAN) design. Network slicing and mmWave communications have been identified as possible enablers for 5G. They provide, respectively, the necessary scalability and flexibility to adapt the network to each specific use case environment, and low latency and multi-gigabit-per-second wireless links, which tap into a vast, currently unused portion of the spectrum. The optimization and integration of these technologies is still an open research challenge, which requires innovations at different layers of the protocol stack. This paper proposes to combine them in a RAN slicing framework for mmWaves, based on carrier aggregation. Notably, we introduce MilliSlice, a cross-carrier scheduling policy that exploits the diversity of the carriers and maximizes their utilization, thus simultaneously guaranteeing high throughput for the eMBB slices and low latency and high reliability for the URLLC flows.Comment: 8 pages, 8 figures. Proc. of the 18th Mediterranean Communication and Computer Networking Conference (MedComNet 2020), Arona, Italy, 202

    Radio Resource Management Satellite Communication Network MCDM Method

    Get PDF
    Worldwide deployment of heterogeneous wireless networks is growing as a result of consumer demand for connectivity at all times and in all places. These customers' interest in multimedia apps like video streaming and VoIP, which demand tight Quality of Service (QoS) support, is growing at the same time. With such limitations, provisioning network resources is a difficult undertaking. In fact, it might be challenging for a network operator to identify trustworthy criteria to choose the optimum network that ensures user happiness while maximising network utilisation, given the availability of numerous access technologies (WiFi, WiMAX, or cellular networks). To solve this problem, each eNB just needs to learn the traffi c conditions or patterns of its owncell in our proposal. Wireless communication systems depend heavily on radio resource management (RRM). To ensure the efficient and successful operation of wireless networks, it involves the allocation and control of radio frequency spectrum, power, and other resources. RRM is significant because it can use scarce radio resources as efficiently as possible, enhancing capacity, lowering interference, and improving service quality. Successful deployment and operation of wireless communication systems like cellular networks, Wi-Fi, and Bluetooth depend on effective RRM approaches. The need for wireless communication is growing, and new technologies and standards are constantly being developed. The methodology of radio resource management (RRM) involves a variety of techniques and algorithms designed to allocate radio resources in a way that maximizes network performance while minimizing interference. Taken as alternate parameter is Laser communication, optical networks, satellite optical communication, vibrations, satellite networks. Taken as is solar radiation power, thermal bending, micro meteorite impact, solar and lunar gravity, earth oblations method. satellite optical communication has reached near 2000 data set compare other data set. The operation of wireless communication networks depends on radio resource management (RRM). Wireless networks would have interference, congestion, and a lacklustre level of service if effective RRM procedures weren't used. RRM is therefore a key component in ensuring that wireless communication systems can provide users with dependable and high-quality services

    On the automation of RAN slicing provisioning and cell planning in NG-RAN

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Network slicing is a fundamental feature of 5G systems that facilitates the provision of particular system behaviours adapted to specific service/application domains on top of a common network infrastructure. While significant progress has already been achieved at specification level by 3GPP with regard to the functional support of network slicing, management solutions for the exploitation of these capabilities in the NG-RAN are still at a very incipient stage. In this context, this paper firstly presents a functional framework for the management of network slicing for a NG-RAN infrastructure, identifying the necessary information models and interfaces to support the dynamic provisioning of RAN slices. On this basis, the feasibility to automate the provisioning of RAN slices is discussed. Furthermore, a self-planning solution is presented to illustrate how a traditional network management process such as planning is expected to evolve to cope with the new challenges associated with RAN slicing management.Peer ReviewedPostprint (author's final draft

    Design and Experimental Validation of a Software-Defined Radio Access Network Testbed with Slicing Support

    Get PDF
    Network slicing is a fundamental feature of 5G systems to partition a single network into a number of segregated logical networks, each optimized for a particular type of service, or dedicated to a particular customer or application. The realization of network slicing is particularly challenging in the Radio Access Network (RAN) part, where multiple slices can be multiplexed over the same radio channel and Radio Resource Management (RRM) functions shall be used to split the cell radio resources and achieve the expected behaviour per slice. In this context, this paper describes the key design and implementation aspects of a Software-Defined RAN (SD-RAN) experimental testbed with slicing support. The testbed has been designed consistently with the slicing capabilities and related management framework established by 3GPP in Release 15. The testbed is used to demonstrate the provisioning of RAN slices (e.g. preparation, commissioning and activation phases) and the operation of the implemented RRM functionality for slice-aware admission control and scheduling

    Guaranteed bit rate traffic prioritisation and isolation in multi-tenant radio access networks

    Get PDF
    ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Network slicing is a key feature of forthcoming 5G systems to facilitate the partitioning of the network into multiple logical networks customised according to different operation and application needs. Network slicing allows the materialisation of multi-tenant networks, in which the same infrastructure is shared among multiple communication providers, each one using a different slice. The support of multi-tenancy through slicing in the Radio Access Network (RAN) is particularly challenging because it involves the configuration and operation of multiple and diverse RAN behaviour over a common pool of radio resources while guaranteeing a certain Quality of Service (QoS) and isolation to each of the slices. This paper presents a Markovian approach to model different QoS aware Admission Control (AC) policies in a multi-tenant scenario with Guaranteed Bit Rate (GBR) services. From the analytical model, different metrics are defined to later analyse the effect of AC mechanisms on the performance achieved in various scenarios. Results show the impact of priorities for services of different tenants and isolation between tenants when different AC polices are adopted.Peer ReviewedPostprint (author's final draft
    corecore