17,595 research outputs found

    Accurate and budget-efficient text, image, and video analysis systems powered by the crowd

    Full text link
    Crowdsourcing systems empower individuals and companies to outsource labor-intensive tasks that cannot currently be solved by automated methods and are expensive to tackle by domain experts. Crowdsourcing platforms are traditionally used to provide training labels for supervised machine learning algorithms. Crowdsourced tasks are distributed among internet workers who typically have a range of skills and knowledge, differing previous exposure to the task at hand, and biases that may influence their work. This inhomogeneity of the workforce makes the design of accurate and efficient crowdsourcing systems challenging. This dissertation presents solutions to improve existing crowdsourcing systems in terms of accuracy and efficiency. It explores crowdsourcing tasks in two application areas, political discourse and annotation of biomedical and everyday images. The first part of the dissertation investigates how workers' behavioral factors and their unfamiliarity with data can be leveraged by crowdsourcing systems to control quality. Through studies that involve familiar and unfamiliar image content, the thesis demonstrates the benefit of explicitly accounting for a worker's familiarity with the data when designing annotation systems powered by the crowd. The thesis next presents Crowd-O-Meter, a system that automatically predicts the vulnerability of crowd workers to believe \enquote{fake news} in text and video. The second part of the dissertation explores the reversed relationship between machine learning and crowdsourcing by incorporating machine learning techniques for quality control of crowdsourced end products. In particular, it investigates if machine learning can be used to improve the quality of crowdsourced results and also consider budget constraints. The thesis proposes an image analysis system called ICORD that utilizes behavioral cues of the crowd worker, augmented by automated evaluation of image features, to infer the quality of a worker-drawn outline of a cell in a microscope image dynamically. ICORD determines the need to seek additional annotations from other workers in a budget-efficient manner. Next, the thesis proposes a budget-efficient machine learning system that uses fewer workers to analyze easy-to-label data and more workers for data that require extra scrutiny. The system learns a mapping from data features to number of allocated crowd workers for two case studies, sentiment analysis of twitter messages and segmentation of biomedical images. Finally, the thesis uncovers the potential for design of hybrid crowd-algorithm methods by describing an interactive system for cell tracking in time-lapse microscopy videos, based on a prediction model that determines when automated cell tracking algorithms fail and human interaction is needed to ensure accurate tracking

    Hybrid human-machine information systems for data classification

    Get PDF
    Over the last decade, we have seen an intense development of machine learning approaches for solving various tasks in diverse domains. Despite the remarkable advancements in this field, there are still task categories that machine learning models fall short of the required accuracy. This is the case with tasks that require human cognitive skills, such as sentiment analysis, emotional or contextual understanding. On the other hand, human-based computation approaches, such as crowdsourcing, are popular for solving such tasks. Crowdsourcing enables access to a vast number of groups with different expertise, and if managed properly, generates high-quality results. However, crowdsourcing as a standalone approach is not scalable due to the latency and cost it brings in. Addressing the challenges and limitations that the human and machine-based approaches have distinctly requires bridging the two fields into a hybrid intelligence, seen as a promising approach to solve critical and complex real-world tasks. This thesis focuses on hybrid human-machine information systems, combining machine and human intelligence and leveraging their complementary strengths: the data processing efficiency of machine learning and the data quality generated by crowdsourcing. In this thesis, we present hybrid human-machine models to address the challenges falling into three dimensions: accuracy, latency, and cost. Solving data classification tasks in different domains has different requirements concerning accuracy, latency, and cost criteria. Motivated by this fact, we introduce a master component that evaluates these criteria to find the suitable model as a trade-off solution. In hybrid human-machine information systems, incorporating human judgments is expected to improve the accuracy of the system. Therefore, to ensure this, we focus on the human intelligence component, integrating profile-aware crowdsourcing for task assignment and data quality control mechanisms in the hybrid pipelines. The proposed conceptual hybrid human-machine models materialize in conducted experiments. Motivated by challenging scenarios and using real-world datasets, we implement the hybrid models in three experiments. Evaluations show that the implemented hybrid human-machine architectures for data classification tasks lead to better results as compared to each of the two approaches individually, improving the overall accuracy at an acceptable cost and latency

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    Leveraging Crowdsourcing Data For Deep Active Learning - An Application: Learning Intents in Alexa

    Full text link
    This paper presents a generic Bayesian framework that enables any deep learning model to actively learn from targeted crowds. Our framework inherits from recent advances in Bayesian deep learning, and extends existing work by considering the targeted crowdsourcing approach, where multiple annotators with unknown expertise contribute an uncontrolled amount (often limited) of annotations. Our framework leverages the low-rank structure in annotations to learn individual annotator expertise, which then helps to infer the true labels from noisy and sparse annotations. It provides a unified Bayesian model to simultaneously infer the true labels and train the deep learning model in order to reach an optimal learning efficacy. Finally, our framework exploits the uncertainty of the deep learning model during prediction as well as the annotators' estimated expertise to minimize the number of required annotations and annotators for optimally training the deep learning model. We evaluate the effectiveness of our framework for intent classification in Alexa (Amazon's personal assistant), using both synthetic and real-world datasets. Experiments show that our framework can accurately learn annotator expertise, infer true labels, and effectively reduce the amount of annotations in model training as compared to state-of-the-art approaches. We further discuss the potential of our proposed framework in bridging machine learning and crowdsourcing towards improved human-in-the-loop systems
    • …
    corecore