2,308 research outputs found

    Diversification Based Static Index Pruning - Application to Temporal Collections

    Full text link
    Nowadays, web archives preserve the history of large portions of the web. As medias are shifting from printed to digital editions, accessing these huge information sources is drawing increasingly more attention from national and international institutions, as well as from the research community. These collections are intrinsically big, leading to index files that do not fit into the memory and an increase query response time. Decreasing the index size is a direct way to decrease this query response time. Static index pruning methods reduce the size of indexes by removing a part of the postings. In the context of web archives, it is necessary to remove postings while preserving the temporal diversity of the archive. None of the existing pruning approaches take (temporal) diversification into account. In this paper, we propose a diversification-based static index pruning method. It differs from the existing pruning approaches by integrating diversification within the pruning context. We aim at pruning the index while preserving retrieval effectiveness and diversity by pruning while maximizing a given IR evaluation metric like DCG. We show how to apply this approach in the context of web archives. Finally, we show on two collections that search effectiveness in temporal collections after pruning can be improved using our approach rather than diversity oblivious approaches

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Parallel Streaming Frequency-Based Aggregates

    Get PDF
    We present efficient parallel streaming algorithms for fundamental frequency-based aggregates in both the sliding window and the infinite window settings. In the sliding window setting, we give a parallel algorithm for maintaining a space-bounded block counter (SBBC). Using SBBC, we derive algorithms for basic counting, frequency estimation, and heavy hitters that perform no more work than their best sequential counterparts. In the infinite window setting, we present algorithms for frequency estimation, heavy hitters, and count-min sketch. For both the infinite window and sliding window settings, our parallel algorithms process a minibatch of items using linear work and polylog parallel depth. We also prove a lower bound showing that the work of the parallel algorithm is optimal in the case of heavy hitters and frequency estimation. To our knowledge, these are the first parallel algorithms for these problems that are provably work efficient and have low depth

    XONN: XNOR-based Oblivious Deep Neural Network Inference

    Get PDF
    Advancements in deep learning enable cloud servers to provide inference-as-a-service for clients. In this scenario, clients send their raw data to the server to run the deep learning model and send back the results. One standing challenge in this setting is to ensure the privacy of the clients' sensitive data. Oblivious inference is the task of running the neural network on the client's input without disclosing the input or the result to the server. This paper introduces XONN, a novel end-to-end framework based on Yao's Garbled Circuits (GC) protocol, that provides a paradigm shift in the conceptual and practical realization of oblivious inference. In XONN, the costly matrix-multiplication operations of the deep learning model are replaced with XNOR operations that are essentially free in GC. We further provide a novel algorithm that customizes the neural network such that the runtime of the GC protocol is minimized without sacrificing the inference accuracy. We design a user-friendly high-level API for XONN, allowing expression of the deep learning model architecture in an unprecedented level of abstraction. Extensive proof-of-concept evaluation on various neural network architectures demonstrates that XONN outperforms prior art such as Gazelle (USENIX Security'18) by up to 7x, MiniONN (ACM CCS'17) by 93x, and SecureML (IEEE S&P'17) by 37x. State-of-the-art frameworks require one round of interaction between the client and the server for each layer of the neural network, whereas, XONN requires a constant round of interactions for any number of layers in the model. XONN is first to perform oblivious inference on Fitnet architectures with up to 21 layers, suggesting a new level of scalability compared with state-of-the-art. Moreover, we evaluate XONN on four datasets to perform privacy-preserving medical diagnosis.Comment: To appear in USENIX Security 201

    Explainable adaptation of time series forecasting

    Get PDF
    A time series is a collection of data points captured over time, commonly found in many fields such as healthcare, manufacturing, and transportation. Accurately predicting the future behavior of a time series is crucial for decision-making, and several Machine Learning (ML) models have been applied to solve this task. However, changes in the time series, known as concept drift, can affect model generalization to future data, requiring thus online adaptive forecasting methods. This thesis aims to extend the State-of-the-Art (SoA) in the ML literature for time series forecasting by developing novel online adaptive methods. The first part focuses on online time series forecasting, including a framework for selecting time series variables and developing ensemble models that are adaptive to changes in time series data and model performance. Empirical results show the usefulness and competitiveness of the developed methods and their contribution to the explainability of both model selection and ensemble pruning processes. Regarding the second part, the thesis contributes to the literature on online ML model-based quality prediction for three Industry 4.0 applications: NC-milling, bolt installation in the automotive industry, and Surface Mount Technology (SMT) in electronics manufacturing. The thesis shows how process simulation can be used to generate additional knowledge and how such knowledge can be integrated efficiently into the ML process. The thesis also presents two applications of explainable model-based quality prediction and their impact on smart industry practices
    • …
    corecore