52 research outputs found

    Interleaved Product LDPC Codes

    Full text link
    Product LDPC codes take advantage of LDPC decoding algorithms and the high minimum distance of product codes. We propose to add suitable interleavers to improve the waterfall performance of LDPC decoding. Interleaving also reduces the number of low weight codewords, that gives a further advantage in the error floor region.Comment: 11 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    Joint linear interleaver design for concatenated zigzag codes

    Full text link

    Novel Methods in the Improvement of Turbo Codes and their Decoding

    Get PDF
    The performance of turbo codes can often be improved by improving the weight spectra of such codes. Methods of producing the weight spectra of turbo codes have been investigated and many improvements were made to refine the techniques. A much faster method of weight spectrum evaluation has been developed that allows calculation of weight spectra within a few minutes on a typical desktop PC. Simulation results show that new high performance turbo codes are produced by the optimisation methods presented. The two further important areas of concern are the code itself and the decoding. Improvements of the code are accomplished through optimisation of the interleaver and choice of constituent coders. Optimisation of interleaves can also be accomplished automatically using the algorithms described in this work. The addition of a CRC as an outer code proved to offer a vast improvement on the overall code performance. This was achieved without any code rate loss as the turbo code is punctured to make way for the CRC remainder. The results show a gain of 0.4dB compared to the non-CRC (1014,676) turbo code. Another improvement to the decoding performance was achieved through a combination of MAP decoding and Ordered Reliability decoding. The simulations show a performance of just 0.2dB from the Shannon limit. The same code without ordered reliability decoding has a performance curve which is 0.6dB from the Shannon limit. In situations where the MAP decoder fails to converge ordered reliability decoding succeeds in producing a codeword much closer to the received vector, often the correct codeword. The ordered reliability decoding adds to the computational complexity but lends itself to FPGA implementation.Engineering and Physical Sciences Research Council (EPSRC

    Repeat-Accumulate Codes for Reconciliation in Continuous Variable Quantum Key Distribution

    Full text link
    This paper investigates the design of low-complexity error correction codes for the verification step in continuous variable quantum key distribution (CVQKD) systems. We design new coding schemes based on quasi-cyclic repeat-accumulate codes which demonstrate good performances for CVQKD reconciliation

    Robust and efficient video/image transmission

    Get PDF
    The Internet has become a primary medium for information transmission. The unreliability of channel conditions, limited channel bandwidth and explosive growth of information transmission requests, however, hinder its further development. Hence, research on robust and efficient delivery of video/image content is demanding nowadays. Three aspects of this task, error burst correction, efficient rate allocation and random error protection are investigated in this dissertation. A novel technique, called successive packing, is proposed for combating multi-dimensional (M-D) bursts of errors. A new concept of basis interleaving array is introduced. By combining different basis arrays, effective M-D interleaving can be realized. It has been shown that this algorithm can be implemented only once and yet optimal for a set of error bursts having different sizes for a given two-dimensional (2-D) array. To adapt to variable channel conditions, a novel rate allocation technique is proposed for FineGranular Scalability (FGS) coded video, in which real data based rate-distortion modeling is developed, constant quality constraint is adopted and sliding window approach is proposed to adapt to the variable channel conditions. By using the proposed technique, constant quality is realized among frames by solving a set of linear functions. Thus, significant computational simplification is achieved compared with the state-of-the-art techniques. The reduction of the overall distortion is obtained at the same time. To combat the random error during the transmission, an unequal error protection (UEP) method and a robust error-concealment strategy are proposed for scalable coded video bitstreams
    corecore