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Abstract

The performance of turbo codes can often be improved by improving the weight spectra

of such codes. Methods of producing the weight spectra of turbo codes have been investi-

gated and many improvements were made to refine the techniques. A much faster method

of weight spectrum evaluation has been developed that allows calculation of weight spec-

tra within a fews minutes on a typical desktop PC. Simulation results show that new

high performance turbo codes are produced by the optimisation methods presented. The

two further important areas of concern are the code itself and the decoding. Improve-

ments of the code are accomplished through optimisation of the interleaver and choice of

constituent coders. Optimisation of interleaves can also be accomplished automatically

using the algorithms described in this work.

The addition of a CRC as an outer code proved to offer a vast improvement on the

overall code performance. This was achieved without any code rate loss as the turbo

code is punctured to make way for the CRC remainder. The results show a gain of 0.4dB

compared to the non-CRC (1014,676) turbo code.

Another improvement to the decoding performance was achieved through a combi-

nation of MAP decoding and Ordered Reliability decoding. The simulations show a

performance of just 0.2dB from the Shannon limit. The same code without ordered re-

liability decoding has a performance curve which is 0.6dB from the Shannon limit. In

situations where the MAP decoder fails to converge ordered reliability decoding succeeds

in producing a codeword much closer to the received vector, often the correct codeword.

The ordered reliability decoding adds to the computational complexity but lends itself to

FPGA implementation.
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1 Introduction and Literature Review

1.1 Thesis Structure and Findings

Chapter 1 introduces communications and in particular digital communications. Sec-

tion 1.2.10 gives an introduction to turbo codes. A background and literature review in

given in Sections 1.2.20 and 1.2.21. Although constructed from convolutional encoders

the turbo code can be analysed as a block code because of the framing necessary for

interleaving. This is discussed in Chapter 2. The choice of interleaver was found to have

a significant impact upon the performance of the turbo code. New interleaver design

methods are introduced in Chapter 3. The ultimate test for performance used in this

work is the computer simulation of the effect an AWGN channel has on the code. How-

ever, it is shown that weight spectrum analysis can give a prediction of performance prior

to running lengthy simulations. This is discussed in Chapter 4 along with interleaver

modification based on codeword weights.

1.2 General Introduction to Communications

A very obvious characteristic that distinguishes man from other animals is his ability to

communicate complex concepts and at high speed. Even before the advent of technology

assisted communications man has benefited from his ability to communicate in a manner

far more advanced than in any other species. Along with audible communications (prim-

itive noises, groanings and speech) man has used forms of communication that are visible

where audible forms are not suited. Cave paintings and early forms of Chinese characters

have been used for longer term storage of information and for cases where both parties

1



have not been simultaneously present. Smoke signals and fire have also been used for

communications as these can be seen over distances far greater than possible with audible

communications. Raised fire baskets placed around the coast warned of the approach of

the Spanish Armada 1588.

Dynamic development has risen out of our ability to communicate and record informa-

tion so that it can be passed down through our generations for their benefit. Discoveries

and theories are continuously being developed by the next generation leading to our

current-day standard of living. Nearly every development in electrical technology has

been exploited and fashioned into some form of communications system; from the simple

battery cell up to the latest multi-core microprocessor, all have played a major role in

communications. In most cases our desire for more efficient communications has driven

this technology.

The use of electrical signals for the transmission of information has replaced tradi-

tional methods of communication. In the past, messages have been carried by runners,

carrier pigeons, drum beats, and torches[2, pg 1]. Electrical communication systems al-

low the transmission of information over much larger distances at speeds approaching the

speed of light. Early systems provided for human to human communications and carried

telegrams or voice. Communications systems make use of many fields such as electronics,

electromagnetics, computing and statistics to name just a few. The fundamental purpose

of a communication system is to carry information from the source to the destination

some distance away. Many sources of information exist but are broadly categorised into

two types, analogue and digital. An analogue source produces a smooth continuously

varying signal, examples include speech, temperature and light intensity. The communi-

cations system must be able to carry and reproduce this signal with a certain degree of

fidelity. Digital sources have discrete values like the letters that make up this text. There

are 26 letters to the English alphabet and there are no valid values between consecutive

letters. The advances in digital computers, particularly small embedded microcontrollers,

2



has led to increased use of digital communication channels. A digital channel must be

able to convey information at an acceptable error rate.

1.2.1 Electricity and it’s use in communication

Today’s young experimenters would most likely demonstrate a simple electrical commu-

nications system by laying a length of wire between a battery and a torch light bulb.

Touching the wires on the battery terminals would cause a current to flow to the light

bulb to produce light, the light can be turned on and off by connecting and disconnecting

the wire to/from the battery terminal.

Samuel F. B. Morse

In the 1830s light bulbs were not readily available when Samuel F. B. Morse developed

the first electric telegraph system. Morse used an electromagnetic transducer in his

experiments. Samuel F. B. Morse, in 1838, demonstrated his telegraph in New York. The

message “Attention, the Universe, by kingdoms right wheel.” was transmitted over ten

miles using Morse code. Later, in 1844, Morse transmitted the bible passage (Numbers

23:23, KJV) “What hath God wrought!” chosen by Annie Ellsworth who had brought

Morse the news that his bill was passed allowing him to place a wire between Baltimore

and Washington, a distance of forty miles.

Morse’s system used a key (form of on-off switch) to connect and interrupt the current

to the electromagnetic receiver. In this system the current has two values determined by

the position of the key. The key was operated for two distinct periods of times, the shorter

time is referred to as a dot and the longer time as a dash. The dot and dash form the

two symbols of a binary system and thus Morse had developed the first digital electrical

telecommunications system. In the Morse Code letters of the alphabet are represented by

a variable length sequence of dots and dashes. The most common letters have the shortest

sequences. Morse, not only provided a means of communication over a distance, he also

3



provided a means of data compression. Morse had addressed two fundamental topics

in communication theory. The first is encoding the most used letters into the shortest

sequences, a form of data compression. The second topic he addressed was reliably getting

the information to the receiver. In today’s teaching of digital communications these two

topics have become distinct and are referred to as source coding and channel coding, these

are described later.

1.2.2 Elements of a Communication System

There are three main elements that every useful communication system must have. These

elements are shown in Figure 1.1. Many forms of information source exist and are

Source Channel Receiver

Figure 1.1: Basic elements of a communication system

categorised into two main types; analogue and digital. Analogue sources are usually

translated into a continuous voltage signal before being transmitted over the channel.

The most prevalent example of an analogue source is speech. Digital sources include

Morse code used in early telegraph systems. More recently the information age has

presented many forms of digital sources due to the wide-spread use of computers. Digital

sources are non-continuous and are represented by a sequence of discrete values.

The channel is the medium that connects the source to the receiver. In the case of

radio we are concerned with electro-magnetic channels. However, before radio, Morse

used a simple electrical circuit and switched on and off a current. However many forms

of channel exist, for speech air is compressed and rarefied in a longitudinal wave. Two

cans, one tied on each end of a taut string, can be used as a communication link. The

taut string becomes the communications channel. As nearly all channels are analogue we

4



must convert digital sources to analogue for transmission, see Section 1.2.5.

The role of the receiver is to receive the signal and recover the information that was

sent at the source. For Morse’s telegraphy system this was a tape which was slowly moved

at a steady speed and a pencil that was connected to the armature of a solenoid. The

solenoid converts the current into a mechanic force that drives the pencil into contact

with the moving tape. In a wired telephony system the speaker or earpiece performs the

role of the receiver converting transitions in electrical current into sound waves.

1.2.3 More Complete Communications System Model

The simple communications model described above only shows the outline. In order to

understand the theory and accommodate radio communication systems we need to de-

velop the model. Perhaps the most significant addition to the model is noise. One of

the biggest challenges to a successful communications system is the way it operates in

the presence of noise. If you are having a conversation with a colleague on a building

site where there is a lot of noise you may find yourself shouting. What you are doing is

increasing the signal power to overcome the noise. Radio communications is susceptible

to electrical noise and in early broadcast systems noise was overcome by using very high

transmitter (Tx) powers, they shouted. Figure 1.2 shows the elements of a communica-

tions system.

Source Encoder Tx Channel Rx Decoder Sink

Noise

Figure 1.2: More complete model of a communication system

The encoder encodes the message into a format that can be transmitted and compat-

ible with the receiver. We saw earlier in the discussion of Morse Code how letters were
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mapped into a series of dots and dashes, this is a form of encoding. The sequences of

dots and dashes are referred to as codewords. It is this part of the communications link

that this thesis is most concerned with. The encoder can also map letters so that the

codeword has redundancy and this can be used to improve performance in the presence

of noise. This can be easily demonstrated in Morse Code by transmitting each sequence

three times instead of just once. The added redundancy allows the receiver to compare

the three received sequences and if one doesn’t match choose the two that match as the

valid codeword. Of the two matching codewords either can then be decoded to the correct

letter. This type of decoding is known as ‘majority logic’ decoding.

The transmitter (Tx) processes the codeword to produce a transmission signal that

is appropriate for the characteristics of the channel. This almost always involves modu-

lation of a carrier as the source signal itself is rarely of a suitable form for transmission

over a distance. Both analogue and digital forms of modulation are discussed later in

Sections 1.2.4 and 1.2.5. The channel is the medium that constitutes the transmission

path and connects the transmitter and receiver (Rx) that are some distance apart. This

medium might be a wire, a beam of light or radio. The channel with have an associated

loss, not all the transmitted energy gets to the receiver. In the case of a radio channel

nearly all the energy is lost and only a small fraction is available to the receiver. Gener-

ally the larger the transmission distance the greater the loss or attenuation. The receiver

amplifies the received signal to compensate for the loss of energy in the channel. It then

demodulates the transmission signal to recover the signal at the source. It performs the

reverse function of the transmitter.

The channel is subject to many unwanted electrical effects such as attenuation, dis-

tortion, interference and noise, particularly for radio channels. Distortion is often caused

by non-linear behaviour of the components of the system. Most transistorised circuits

are not perfectly linear and will introduce some distortion. Interference may occur due to

other transmitters, power distribution networks, motors, switches, etc. Filtering can help
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eliminate interference that has a frequency band outside of the desired signal frequency

band. Noise is the random electrical energy that is naturally present, thermal noise is

one example. Thermal noise occupies all range of frequencies. Filtering eliminates a large

amount of this noise but leaves some noise present at the desired signal frequency band.

However, the noise is superimposed on the carrier and can corrupt the message. Noise

therefore is a fundamental system limitation.

1.2.4 Analogue communication

Whilst this thesis is concerned with digital communications it is worthwhile to give ana-

logue communications a mention as it will help us gain a better understanding of the

benefits of digital. Analogue communications is also a good place to start our discussion

of modulation.

The first analogue electrical communication system was the telephone patented by

Alexandra Graham Bell in March 1876. It was a wired system that consisted simply of

a microphone, speaker, battery and wire. No electronic amplifiers were available at this

time and the sound heard at the receiver was faint even when the person who was speaking

at the transmitter was shouting. In 1876, sometime after he invented the microphone,

Bell invented his “electrical speech machine” which we now know as the telephone. In

1878 Bell had set up the first telephone exchange in New Haven, Connecticut. In 1884

long distance connections were made between Boston, Massachusetts and New York City.

Wire can carry all frequencies of speech and can even carry DC current. Thus wired

telephony is possible without modulation. However, wireless channels cannot adequately

carry speech frequencies, they require a transmitter that performs modulation. Essen-

tially converting speech frequencies to higher frequencies that can be carried over a wire-

less channel. The wireless receiver has to perform the reverse operation, demodulation.
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Analogue Modulation

Where a channel cannot directly carry the information signal a carrier signal is generated

than can be carried over the channel. The carrier signal is nearly always higher in

frequency than the information signal. The carrier is a repetitive waveform such as a

sine wave that has three main parameters; amplitude, frequency and phase. A sinusoidal

carrier signal can be defined as

vc = Ec cos(ωct+ φc)

AM FM PM

Any one of three parameters can be varied with time to modulate the carrier, thus the

information signal can be used to modulate the carrier. The demodulator in the receiver

(called a detector is some texts) detects the variation in the carrier and recovers the

information signal. By varying Ec the amplitude of the carrier signal can be made to

follow the information signal, this is known as Amplitude Modulation (AM). Similarly ωc

and φc can be varied to provide Frequency Modulation (FM) and Phase Modulation (PM)

respectively.

1.2.5 Digital Communication

Digital communication is involved with the transmission of information in a digital form.

The sources themselves need not be digital as the can be digitised as in the case with

digital cellular phone networks. With the boom in the digital era you could be excused

for thinking that digital communications is a more recent technology. However, as we

have seen, the first telegraph system developed by Morse was digital. Telegraph systems

required letters to be encoded into Morse Code and this could only be done by trained

operators. Bell’s telephony system was quickly adopted as it could carry speech and

removed the manual encoding operation. This system and many others following it
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were analogue. It wasn’t until computers were available that the digital communications

revival began. Computers allowed encoding to be done automatically and digital systems

no longer needed trained operators to encode and decode messages.

Émile Baudot, in 1875, developed a system of coding where every letter was encoded

into a fixed-length 5-bit binary codeword[3, pg 13][4, pg 12]. His work found applications

in telegraph systems. As newer telegraph systems emerged many used modified versions

of the Baudot code.

Nyquist

The early theoretical work of Harry Nyquist in [5] determined the maximum signalling

rate that could be used over a channel of a given bandwidth without intersymbol in-

terference. Nyquist’s work was the precursor to our understanding of modern digital

communications systems. His model of a telegraph system modelled the transmitted

signal as

s(t) =
∑

n

ang(t− nT ) (1.1)

where g(t) represents the basic pulse shape and an are the ±1 mappings of the binary

data sequence transmitted periodically with the interval T seconds per bit[3, pg 13][4,

pg12]. Nyquist found that the optimum pulse shape, band-limited to B Hz and maximise

the bit rate, to be g(t) = sin(2πBt)/2πBt. He concluded that the maximum pulse rate

is 2B pulses per second, widely known as the Nyquist rate. For each sampling point the

corresponding pulse shape has an amplitude defined by the sample value, an, for other

sampling points the pulse shape value is zero and thus does not interfere with other

samples. This is shown graphically in Figure 1.3.

s(t) =
∑

n

an
sin[2πB(t− nT )]

2πB(t− nT )
(1.2)

Equation 1.2 allows a signal of bandwidth B to be reconstructed by summation of
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the pulses centred on the sample values. The reconstructed signal is shown by the bold

curve in Figure 1.3. Note that it passes through the sample points without error.

t

ang(t− nT )

0 T 2T 3T 4T 5T 6T

Figure 1.3: Band-limited pulses with no inter-symbol interference (only four pulses shown
for clarity)

Hartley’s Law

In his publication in 1928[6], Hartley investigates the amount of data that can be trans-

mitted reliably using a number of distinct pulses over a band-limited channel. He argued

that the dynamic range of the signal amplitude and the precision of the receiver in de-

tecting amplitude levels limited the maximum number of distinct pulses that could be

reliable transmitted over a channel. The number of distinguishable levels, M , is stated as

M = 1+A/∆V , where A is the signal amplitude voltage (limited by a power constraint)

and ∆V is the precision of the detector. Drawing on Nyquist’s theory that the maximum

pulse rate is twice the channel’s bandwidth, R ≤ 2B, combined with the number of bits

per pulse being log2(M) capacity can be expressed as in Equation 1.3.
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C = 2B log2(M) (1.3)

Shannon Hartley theorem

Shannon’s channel capacity theorem [7] is concerned with achieving reliability through

error correction coding rather than through distinguishing pulse levels. M in Hartley’s

formula is specified in terms of signal-to-noise ratio.

C = B log2

(

1 +
S

N

)

(1.4)

It can be seen that Equation 1.4 can readily be obtained by substitutingM =
√

(1 + S/N)

in Equation 1.3.

Sampling and Pulse Coded Modulation (PCM)

For digital encoding and transmission of an analogue source it is first necessary to digitise

(to make digital) the source. It is possible to transmit very short intervals of a analogue

signal with large gaps between the intervals and to be able to reconstruct the signal at

the receiving end. The short intervals of the analogue signal are called samples. The only

condition is that these samples must be taken at a minimum rate - the Nyquist rate -

which is twice the highest frequency component of the signal. An application of sampling

is in time division multiplexing (TDM) where the gaps can be filled with samples from

other source signals and carried on the same wire. TDM is used by telephone networks

to simultaneously carry more than one voice channel on just one line.

To be transmitted digitally the samples must undergo a further process called quan-

tisation. This involves numbering the amplitude of the samples with finite precision. For

digital speech telephony systems that employ 8-bit PCM 256 different levels are used to

represent the sample amplitudes.
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Figure 1.4: PCM modulation showing sampling

Digital Modulation

Each form of analogue modulation has a digital equivalent. The modulating signal,

instead of being a continuously varying value, has discrete values. In digital modulation

the term ‘shift keying’ is used in place of the word ‘modulation’. AM becomes amplitude

shift keying (ASK). The reference to ‘keying’ comes from the use of a Morse Key used in

early telegraph systems.

Analogue Digital Extensions

AM ASK
FM FSK DTMF
PM PSK BPSK,QPSK,8-PSK

Table 1.1: Digital modulation types shown with the analogue equivalent
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Figure 1.5: QPSK Constellation.
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1.2.6 Noise

In early communication systems the human operator would notice noise at the receiver,

much like the often heard hiss on an AM radio. The human operator had the job of

understanding the information even in the presence of this noise. The brain is remarkably

effective at this job of recovering the original message, sometimes even if a whole word

is lost. In these early systems the human brain performed the role of error correction.

Prior to the introduction of FM, AM broadcast radio transmitted music over the air. To

overcome the hiss caused by electrical noise high transmission power was used, very much

like having to shout to a friend in a noisy place. Transmitting at a higher power increases

the signal to noise ratio.

1.2.7 Bandwidth

Gain(dB)

Frequency

-3

0

fl fh

Bandwidth (B)

Figure 1.6: 3dB Bandwidth

For a communications system to operate in the presence of other communications

systems, each system requires its own frequency band, otherwise interference is going

to occur. Often broadcast radio programmes are unidentified by their carrier frequency

or wavelength. The user select what programme they want to listen to by tuning their

receiver to a particular carrier frequency. A rapidly changing signal will occupy a large

14



range of frequencies and is said to have a high bandwidth. Broadcast radio programmes

are separated so that there is no overlap in their frequency spectra, otherwise interference

will result. Each system is given only a finite amount of bandwidth B and this becomes

the second fundamental system limitation. A communications channel requires sufficient

bandwidth to accommodate the spectrum of the signal. Information sources have varying

bandwidth requirements, TV video signal requires a 6MHz bandwidth and voice a much

lower bandwidth of 3kHz. For digital signals with symbol rate r, the bandwidth must be

B ≥ r/2.

1.2.8 Coding

Coding forms an essential part of any digital communications system. Noise present in

communications systems have the potential to distort any information that is conveyed

over them. In most systems it is necessary to devise coding schemes which will allow

some tolerance to distortion caused by noise.

Block codes

Codes are constructed from fields with a finite number of elements. These finite fields

are called Galois fields in honour of Évariste Galois. A Galois field having q elements

is referred to as GF(q). A field must have at least two elements; a zero element and a

one element. Thus the GF(2) is the simplest Galois field. Table 1.2 shows that addition

in GF(2) can be achieved using modulo-2 arithmetic. Multiplication in GF(2) can also

+ 0 1
0 0 1
1 1 0

Table 1.2: Addition over GF(2)

be performed by modulo-2 arithmetic, this is shown in Table 1.3 In general fields can be

created with any value of q that is either a prime or an integer power of a prime. Where
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· 0 1
0 0 0
1 0 1

Table 1.3: Multiplication over GF(2)

q is prime, modulo-q arithmetic can be used for addition and multiplication. If q is a

power of a prime, q = pm, then addition and multiplication are performed using modulo-p

arithmetic. GF(pm) is known as the extension field of GF(p)[3, pg 418][4, pg 404]. The

elements of GF(2) are simply 0 and 1. An extension field is created from a primitive

polynomial and the primitive element, α. For example, the elements of GF(23) can be

generated using the primitive polynomial, p(x) = x3+x+1 by substituting x with α such

that p(α) = α3+α+1 = 0. Adding elements in GF(2m) the vector representation allows

Power Polynomial Vector
0 0 000
1 1 001
α α 010
α2 α2 100
α3 1 + α 011
α4 α + α2 110
α5 1 + α + α2 111
α6 1 + α2 101

Table 1.4: GF(23)

the exclusive-or operation available on nearly all processors to be used. Multiplication

is achieved using the power representation, multiplication is done by adding the powers

modulo 2m − 1.

G Matrix

A codeword, C, for a block code, can be generated by multiplication of the information

vector, D, and a matrix, G, called the generator matrix.

C = G ·D (1.5)
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H Matrix

Received codewords can be checked for errors by multiplying them by a matrix called the

parity check matrix, H. Without any errors the result should be the zero matrix, 0.

C ·HT = 0 (1.6)

A non-zero result would indicate that the codeword has errors caused by noise.

Hamming Codes

In 1950 Richard Hamming published his work on the Hamming Code. Hamming was

frustrated by the errors produced by the card reader of the computer he was using a Bell

labs. He created his code to solve this problem. The (7,4) (the codeword is seven bits

and the information has four bits) Hamming code is able to correct an error in four bits

of data due to the redundancy of an additional three bits called parity bits.

1.2.9 Convolutional codes

Block codes, discussed earlier, are decoded using hard decision decoders. The use of

convolutional coding allows soft decision decoding so that performance approaches the

channel capacity [4, pg 491]. In convolutional codes, however, the codeword bits are

generated by a different process. Information bits are shifted along a tapped shift register,

connected to the taps are a number of modulo-2 adder. This arrangement shown in

Figure 1.7 performs convolution on the information and produces the output bit sequence

required. The polynomial representation for the convolutional encoder of Figure 1.7 is

1 + x+ x3.
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Figure 1.7: An example of a convolutional encoder.

1.2.10 Turbo codes

Turbo codes were introduced in 1993 by Berrou, et. al. [8] and achieve a performance

that is very near to the Shannon limit. The name ‘turbo’ comes about from the method

of decoding were two or more (usually limited to two) maximum a posteriori probability

(MAP) decoders pass extrinsic information between each other and this extrinsic infor-

mation completes a cycle through all the MAP decoders in each iteration. This cycling

of information is likened to a turbo of an internal combustion engine where the pressure

of the exhaust gases is used to increase the inlet manifold pressure of the engine. The

literature on turbo codes will be discussed in Sections 1.2.20 and 1.2.21.

1.2.11 Parallel concatenation

The structure of a turbo encoder is simply a concatenation of two (sometimes more)

convolutional or block encoders. The information bits are passed to both constituent

encoders; directly to the first and interleaved before entering the second. Each encoder

operates on an input of k bits and each produces a number of parity bits. If each encoder

produces one parity bit for each input bit then a total of two parity bits will be generated

for each information bit given rise to a rate 1
3
code. The code rate can be increased

by removing some of the bits from the parity output, this is known as puncturing. In

this work multi-binary, rate b
b+1

, encoders are used to increase code rate. Multi-binary

encoders have two or more convolution polynomials and are an extension of duo-binary
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codes.

The diagram in Figure 1.8 shows the structure of a turbo code, a parallel concate-

nated convolutional code (PCCC), note the parallel nature of the information flow paths

into RSC1 and RSC2. The PCCC encodes a length k binary information sequence

i = (i0, i1, . . . , ik−1) ∈ [GF(2)]k, where GF(2) represents the binary Galois field. There

exists three parallel paths through the PCCC as shown in Figure 1.8. The uppermost

path is clearly the information sequence passing through to the output forming the sys-

tematic portion of the code. The middle path provides parity, p1, which is produced

by a convolutional encoder. The lower most path is similar to the middle path in that

it also produces parity, p2, using a convolutional encoder. However, the information

sequence is interleaved prior to the input to this path’s coder. The interleaver produces a

permutation of the information sequence that is supplied to the lower encoder, thus the

lower encoder produces a parity output that is uncorellated with the parity output of the

upper encoder. The output from the three paths are combined to produce the codeword

c = (i,p1,p2).

π

RSC1

RSC2

Figure 1.8: Structure of a parallel concatenated convolutional code encoder showing
information flow to two parallel branches.

1.2.12 Serial concatenation

Serially concatenated codes described by Benedetto and Montorsi[9] are a serial concate-

nation of two (sometimes more) constituent coders separated by an interleaver. Again, as
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for parallel concatenation, the constituent coders maybe block or convolutional coders.

In the case of serial concatenation the k information bits are encoded by the first encoder

to produce parity bits. In contrast to parallel concatenation, the parity output from the

first encoder is also interleaved to give an intermediate codeword of N bits. This inter-

mediate codeword is then input to the second encoder which produces the final codeword

of n bits. Using rate 1
2
constituent encoders gives rise to a rate 1

4
code.

1.2.13 Interleaver

In order for the iterative decoder to be effective it is important to reduce as much as

possible the cross-correlation of the extrinsic information from one of the MAP decoders

to the others. Therefore an interleaver permutes the information sequence entering the

second encoder. Due to the interleaving the second encoder will produce a parity stream

that is different to that produced by the first encoder. Events that are localised in the first

encoder are spread out by the interleaver before being encoded by the second encoder.

This reduces the cross-correlation and improves the performance of the iterative decoder.

Much of the work presented herein is focused on designing good interleavers that give the

best performance for these decoding schemes.

1.2.14 Tailbiting

Tailbiting is used in this work to avoid the necessity of trellis (a form of state transitional

diagram that shows the change of state for each time step) termination. A starting state

is chosen such that the encoder’s state finishes in the same state that it started in. This

means that the trellis ends can be connected to form a circular trellis[10].
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1.2.15 Both a block code and a convolutional code!

Since the turbo encoder employs an interleaver the information must be ‘framed’ so that

it can be permuted as required. This framing means that the turbo code can be thought

of as a block code. As already stated above it can be a concatenation of two convolutional

codes. Thus, it fits into both block code and convolutional code classifications. In

Chapter 6.1 the turbo code is treated as a block code and decoded using a form of

list decoder. In this work the generator matrix is used to derive the decoding equations.

1.2.16 Decoding

Since turbo codes have two (or more) constituent encoders it lends itself to being decoded

iteratively. The likelihood of the individual bits from the decoding of the first constituent

decoder is, after interleaving, fed into the second decoder. Thus it is important that the

decoding algorithms used provide likelihood information for each individual bit. As the

Viterbi algorithm makes a maximum-likelihood decision on a sequence of bits and does

not provide individual bit likelihood it is not suitable for use in the iterative decoding

of a turbo code. The soft-output Viterbi algorithm can be used, with less complexity

than the MAP decoder, but has degraded performance[11, pg 642]. Whatever algorithm

is chosen the likelihoods computed by the first decoder are passed to the second decoder.

Then the second decoder produces bit likelihoods that are passed, after de-interleaving,

back to the first decoder. This process is repeated for a number of iterations until the

decoding converges.

MAP Decoding Using the BCJR Algorithm

A commonly used MAP algorithm is the method developed by Bahl, Cocke, Jelinek and

Raviv (BCJR)[12] from now on referred to as the BCJR algorithm. The BCJR algorithm

provides probabilities for the individual bits that are used in the iterative decoding of
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turbo codes. From our discussion on convolutional codes we know that a trellis diagram

can be used to represent the state transitions with respect to time. Here it is used to

illustrate the operation of the BCJR algorithm.

1.2.17 Why error correction?

The signal-to-noise ratio (SNR) of a communications channel determines the number of

transmission errors that occur in a digital communications system. For a system which

has a fixed SNR an alternative means must be found to increase the reliability in order

to reduce the number of transmission errors. Error correction is most often the best

solution. Using error correction it is possible to achieve a lower bit error rate for the

same SNR and hence communications becomes that much more reliable.

1.2.18 Coding gain

An alternative method of reaching the required bit error rate is to increase the trans-

mission power, directly increasing the SNR. So to achieve a certain bit error rate either

the transmission power can be increased or an error correcting scheme can be introduced.

The utilisation of the error correcting solution as opposed to the increased power solution

leads to the concept of ‘coding gain’. Proakis[3, pg 442][4, pg 426] defines coding gain as

the gain of the coded system compared to the uncoded system.

1.2.19 Before Turbo Codes

Prior to the introduction of turbo codes[8] many error correcting coding techniques had

been developed. The performance of these codes was far removed from the theoretical

limits described by Shannon[7, 13]. These error correcting codes could be classified as

either block codes or convolutional codes. As you will read later a turbo code can partially

fit into both categories.
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Berrou introduced turbo codes in 1993 [8] and are reviewed in [14, 15, 16, 17, 6, 18].

1.2.20 Interleaver design

It is known that the choice of interleaver has a significant influence on the performance of

a turbo code[19, 20, 21]. The work in [21], although originally applied to trellis terminated

codes, can be adapted and applied to tailbiting schemes.

The diagram in Figure 1.8 shows the structure of a turbo code, a parallel concatenated

convolutional code (PCCC). The PCCC encodes a length k binary information sequence

i = (i0, i1, . . . , ik−1) ∈ [GF(2)]k, where GF(2) represents the binary Galois field. There

exists three parallel paths through the PCCC as shown in Figure 1.8. The uppermost

path is clearly the information sequence passing through to the output forming the sys-

tematic portion of the code. The middle path provides parity, p1, which is produced by

a recursive convolutional encoder. The lower most path is similar to the middle path in

that it also produces parity, p2, using a recursive convolutional encoder. However, the

information sequence is interleaved prior to the input to this path’s coder. The interleaver

produces a permutation of the information sequence. The output from the three paths are

combined to produce the codeword c = (i,p1,p2). The permutations can be described

by a permutation vector π = (π0, π1, . . . , πk−1) applied to the information sequence to

give the permuted information sequence i′j = iπj
, j = 0, 1, . . . , k − 1.

The interleaver permutes the information sequence so that when two consecutive non-

zero symbols are presented to the upper RSC they are spread out by the interleaver to

ensure that they are not consecutive in the second RSC. The interleaver ensures that the

non-zero symbols are spread out for at least one of the RSCs. For all possible sequences of

two or more non-zero symbols it is possible to find the minimum spread. If an interleaver

is entirely random then it is quite likely that this minimum spread will be very small

and will have an undesirable effect on the weight spectrum and hence performance of

the overall code. It is known that structured interleavers can be developed with good
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spreading capabilities[22]. However, it has been found that these interleavers produce

very high multiplicities in the terms close to the dminterm of the weight spectrum, this

leads to poor performance[22]. The union bound frame error rate is proportional to the

multiplicities.

1.2.21 Weight Spectrum Analysis

Turbo codes have excellent performance at low signal-to-noise ratios due to the relatively

low number of low weight codewords. Using primitive feedback polynomials and large

interleavers performance is improved through spectral thinning. However, the error floor

occurs due to the low free distance of the turbo code[15, 23, 24]. Later in the chap-

ter the union bound will be introduced. The union bound can be calculated from the

weight spectrum and used to predict the asymptotic performance. The results from many

simulations show that error floor performance approaches the union bound at moderate

signal-to-noise ratios. The introduction of the interleaver makes weight spectrum compu-

tation much more complex. This is because shifted information patterns when interleaved

can create different patterns which then lead to codewords with different weight. All shifts

of a pattern have to be evaluated.

1.2.22 Techniques

Existing Weight Spectrum Evaluation procedures

Weight-two Input Sequence Algorithm

This procedure involves an information input sequence generator that generates all the
(

k

2

)

possible weight-two information sequences. These are then encoded by the turbo encoder

(PCCC) to produce codewords and the weights of these are evaluated. It is assumed

in this method that the lowest Hamming weight d
(2)
min codewords produced will give the

dmin of the code. In a paper by Garello et al[25], it is proven that this method does not
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always produce codewords that have a Hamming weight equal to the minimum distance,

d
(2)
min ≥ dmin. This procedure for producing dmin codewords becomes even less reliable

for short interleaver lengths (k < 1000, for example). When this method was tried with

codes having interleaver length k = 676 the results showed that many dmin and other low

weight codewords were not found. Simulation of these codes showed that often a dmin

codeword can be produced from a weight four information sequence. This procedure

has to be discarded as extending this procedure to weight-four produces an unreasonable

computational complexity. Further analysis of the importance of information sequences

of weight greater than two can be found in[26].

Error Event Algorithm

A initial limit is set on the maximum weight of codeword to be produced, d∗. This should

be greater than the expected minimum distance, d∗ > dmin. The set S of all information

sequences that force the RSC to leave the zero state at time zero and produce a combined

weight (information plus parity from the RSC) less than d∗ are turbo coded and their

codeword weights evaluated. Is is important to consider not only error events (sequences

forcing the RSC to leave state zero and return to state zero) but also the concatenation

of these error events. This procedure must be repeated with all shifted versions of the

information sequences in set S along the interleaver length k. Garello et al[25] state

that this method works well for codes with small minimum distance (dmin < 10). The

computational complexity becomes prohibitive with larger dmin.

In this work there is a requirement to analyse turbo codes with duo-binary[27] and

multi-binary[28] constituent coders. This gives rise to a much larger number of possible

error events which is due to the increase in the number of possible state transitions. In a

binary RSC there are only two possible exit paths from any given state. For a duo-binary

there are four possible exit paths from any given state. And for the multi-binary RSC

with rate b/(b + 1) there are 2b possible exit paths from any given state. The effect of
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this is that for duo-binary and multi-binary turbo codes the complexity of the error event

method becomes prohibitive.

1.2.23 Current Standards Utilising Turbo Codes

Turbo codes have been deployed in many emerging standards. The most significant of

these being Digital Video Broadcast (DVB)[29], 3G and 4G LTEmobile phone standards[30]

and WirelessMAN, a metropolitan area network[31].

1.3 Thesis Aims

The overall aim of this work is to advance the field of turbo codes. This work presents

many advances made to the field, backed up by the filing of a patent and paper being

presented at ISIT2004. The objectives will be summarised below.

1.3.1 Objectives

Improvements to a turbo code based communications system are to be made by inves-

tigating improvements to both the encoder and the decoder. Below the objectives are

listed for both the encoder and decoder.

Objectives for the Improvement of the Encoder

• Develop new interleaver design techniques.

• Produce new structures for the constituent RSC encoders.

• Investigate the advantages of outer codes.

Objectives for the Improvement of the Decoder

• Investigate the possibility of combining decoding techniques into a hybrid decoder.
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• Can an outer code provide information back to the inner (turbo-MAP) decoder?

• Understand better the turbo-MAP non-convergence behaviour.
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2 Turbo Code as a Block Code

2.1 Introduction

It is generally recognised that cycles of length four in LDPC codes (and any other type

of code if using MAP decoding) limit convergence[32]. There are well performing designs

of LDPC codes which minimise cycles of length six and eight. An example of such codes

are the Progressive Edge Growth (PEG) LDPC codes[33], so called because they are

formed by randomly adding edges to the Tanner graph ensuring that short cycles are not

produced. The idea being explored in this section is whether turbo codes designed to

have a reduced number of cycles are able to achieve higher performance.

2.2 Definition of a ‘Cycle’

The rows of the H matrix correspond to parity check equations for each parity bit. This is

clearly seen when the H matrix is in its reduced echelon form( having an identity matrix

in it’s left portion). There are n − k parity check equations corresponding to the n − k

rows of the H matrix. Reduced echelon form can be obtained from linear combinations of

the rows of the H matrix, coupled with column swapping as necessary to form an identity

matrix for the parity bits. How to obtain a reduced echelon form is discussed later. Parity

check equations are derived from the H matrix by representing the codeword as a vector,

v = {d0, d1, . . . , dk−1, p0, p1, . . . , pn−k−1} and multiplying this by H to give zero syndrome

as in equation 2.1.

H · vT = 0 (2.1)
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In belief propagation[34] each parity check equation is used to transmit extrinsic

information to each bit in the equation and to receive extrinsic information from all

other equations involving that bit. With reference to Figure 2.1, cycles of length four

occur when the same two bits occur in any two parity check equations. For a cycle of

length six to occur three parity check equations and three bits must be involved. Such

cycle occurs when for example, i2 and i4 belong to the first parity check equation, i4 and

i5 belong to the second and the third has i2 and i5. Similarly a cycle of length eight must

involve four parity check equations and four bits. Example cycles in the H matrix are

clearly illustrated in Figure 2.1 for cycles of length four, six and eight.

0 0 0 1 0 1 0 0 1 1 0 0
1 0 1 0 0 1 1 1 0 0 1 1
0 1 1 0 0 0 0 1 1 0 1 0
0 1 0 0 1 1 0 1 0 1 0 1
1 0 1 0 1 1 0 1 0 0 1 0
1 1 0 1 1 0 1 0 1 0 1 0

Figure 2.1: Cycles of length 4, 6 and 8.

From Figure 2.1 is can be seen that the cycle of length four has four line segments

or corners, cycles of length six have six segments and cycles of length eight have eight

segments. These cycles can also be shown using a Tanner graph[1]. Figure 2.2 shows a

partial Tanner graph for the H matrix in Figure 2.1, some nodes and edges are not shown

for clarity. The dotted lines show a cycle of length four and the dashed line show a cycle

of length six.

2.3 Derivation of H Matrix of a Turbo Code

The H matrix of a parallel concatenated convolutional code (PCCC turbo code) is formed

from the joining of the H matrices of the constituent coders. The H matrix can be

considered as a list of parity check equations. For a parallel concatenation of two coders

30



i1 i2 i3 i4 i5 i6 i7

Figure 2.2: Tanner graph[1] representation; cycle length 4 (dotted) and 6 (dashed).

the parity from both coders is used to form the codeword and so the parity check equations

associated with both coders can be combined into a H matrix that describes the turbo

code. When producing the turbo code’s H matrix the effect of the interleaver must be

considered for the parity check equations associated with any constituent coder that has

interleaved input. The H matrix will be derived for PCCC having two recursive systematic

coders (RSCs), where the input to the second RSC is interleaved as shown in figure 1.8.

For a recap on the structure of the encoder refer back to Section 1.2.11.

2.3.1 H Matrix of the Recursive Systematic Coder (RSC)

The input, output and coefficients of the RSC can be described in polynomial form.

The input, d(x), is convolved with the feed-forward polynomial, b(x). The result is then

deconvolved by the feedback polynomial, a(x), to give the output, p(x). The polynomials

for the RSC shown in figure 2.3 are b(x) = 1+x2 and a(x) = 1+x+x2. We will continue

to use these polynomials to illustrate this procedure by way of example.

p(x) =
d(x) · b(x)

a(x)
(2.2)
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Figure 2.3: An example of a constituent encoder.

a(x) · p(x) = b(x) · d(x) (2.3)

a(x) · p(x) + b(x) · d(x) = 0 (2.4)

0 = a(x) · p(x) + b(x) · d(x)

=
[

1 + x2
]

·
[

d0 + d1x+ d2x
2 + d3x

3 + d4x
4 + d5x

5 + d6x
6
]

+
[

1 + x+ x2
]

·
[

p0 + p1x+ p2x
2 + p3x

3 + p4x
4 + p5x

5 + p6x
6
]

(2.5)

= (d0 + d5 + p0 + p6 + p5) x
0

+ (d1 + d6 + p1 + p0 + p6) x
1

+ (d2 + d0 + p2 + p1 + p0) x
2

+ (d3 + d1 + p3 + p2 + p1) x
3

+ (d4 + d2 + p4 + p3 + p2) x
4

+ (d5 + d3 + p5 + p4 + p3) x
5

+ (d6 + d4 + p6 + p5 + p4) x
6 (2.6)

In this example a tailbiting scheme is used, the information length, k, is chosen to be 7.

The information length is kept small so that the follow equations can be easily written.

Information length must not be a factor of three as this is the period of the RSC and

tailbiting would not be possible. We can define xi+7 = xi for number of information bits,
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k = 7. From equation 2.6 terms in x0, x1, x2, . . . , x6 are collected to produce the seven

parity check equations required for the H matrix.

d0 + d5 + p0 + p6 + p5 = 0

d1 + d6 + p1 + p0 + p6 = 0

d2 + d0 + p2 + p1 + p0 = 0

d3 + d1 + p3 + p2 + p1 = 0

d4 + d2 + p4 + p3 + p2 = 0

d5 + d3 + p5 + p4 + p3 = 0

d6 + d4 + p6 + p5 + p4 = 0 (2.7)

d(x) and p(x) are combined systematically to produce a codeword v(x) = d(x)+p(x)·xn−k.

v(x) can be represented as a vector v = {d0, d1, d2, d3, d4, d5, d6, p0, p1, p2, p3, p4, p5, p6},

then a matrix can be found that when multiplied by v gives a zero vector and reproduces

the parity check equations 2.7.

H · vT = 0 (2.8)
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1 0 0 0 0 1 0 1 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 0 0 0 0 1

1 0 1 0 0 0 0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0 1 1 1 0 0 0

0 0 1 0 1 0 0 0 0 1 1 1 0 0

0 0 0 1 0 1 0 0 0 0 1 1 1 0

0 0 0 0 1 0 1 0 0 0 0 1 1 1
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(2.9)

It turns out that each row in the H matrix is a cyclic shift of its preceding row. The H

matrix is easily determined from the coefficients of the RSC polynomials.

2.3.2 Parallel Concatenation of two RSCs

The turbo code in this example is a parallel concatenation of two RSCs. The information

supplied to the lower RSC is first interleaved. For this example let the interleaver be

described by the permutation, Π = {4, 6, 1, 3, 5, 0, 2}, and both RSCs have the same

polynomials as in figure 2.3. The H matrix for the lower RSC can be derived from the

H Matrix of the upper RSC by permuting the information columns according to the
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interleaver description.







































0 0 0 0 1 1 0 1 0 0 0 0 1 1

0 1 1 0 0 0 0 1 1 0 0 0 0 1

0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0 1 1 1 0 0 0

1 0 0 0 0 0 1 0 0 1 1 1 0 0

0 0 0 1 1 0 0 0 0 0 1 1 1 0

1 1 0 0 0 0 0 0 0 0 0 1 1 1







































(2.10)

For the lower RSC let the parity be called q(x) so that the codeword vector for the turbo

code is v = {d0, d1, d2, d3, d4, d5, d6, p0, p1, p2, p3, p4, p5, p6, q0, q1, q2, q3, q4, q5, q6}. For the

complete turbo code then Hturbo · vT = 0 and the H matrix for the turbo code is simply
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a combination of the H matrices of both the RSCs.

H =





















































































1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1





















































































(2.11)

2.4 Analysis of Cycles from H Matrix

An investigation was carried out to count the number of cycles in the H matrix of a

typical turbo Code. An algorithm was developed so that this search could be carried out

with the use of a computer. Prior to the development of a procedure to derive the H

matrix of the Turbo code, this algorithm was applied to the H matrix of a low density

parity check (LDPC) code. It was later applied to the H matrix of a turbo code.

2.4.1 Algorithm for searching for cycles in a H Matrix

The search for cycles in based on a tree search method. First a search is made in each

row of the H matrix until a 1 is found and its column is recorded as the starting column.
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When a 1 is found its row is searched for another 1, if found its column is searched

for another 1. For this 1 its row is searched for another 1 and if this 1 is in the same

column as the starting column then a cycle of length four has been found. Row and

column searches are made alternatively at each level of the tree search. With reference

to Figure 2.1, when searching for cycles of length greater than four it is important to

check that no more than one horizontal line occurs in any row, and that no more than

one vertical line occurs in any column, otherwise the effect is of a shorter cycle.

2.4.2 Cycles in the H Matrix of a Turbo Code

For a convolutional code that is decoded using a MAP decoder the short cycles may not

become an issue since the MAP decoder is not iterative. However, in a turbo decoder

consisting of two convolutional coders, the cycles between the constituent coders becomes

important. This is due to the iterative nature of the turbo decoder. The cycles that need

investigating are those which cross from the upper half of the H matrix to the lower

half. Remember that the upper half of the H matrix forms the parity check equations

for the first constituent RSC and the lower half forms the parity check equations for the

second constituent RSC. This requires a modification to the algorithm that was originally

applied to the H matrix of the LDPC code. After cycles are detected in the H matrix

they are analysed to check that each row in the cycle comes from alternating halves of

the H matrix, ie. cycles between the constituent RSC coders. Cycles that fall entirely

with one half of the H matrix are not a problem since these are localised to just one

constituent RSC whose MAP decoder is immune to such cycles. Since the only cycles

counted are those which cross the boundary between the constituent RSCs, these do not

involve parity bits because of the structure of the matrix. Each constituent RSC produces

its own set of parity equations.
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2.4.3 Cycle Counting for the (1014,676,13) Turbo Codes

Later in Section 4.1.3 an interleaver modification algorithm will be described that im-

proves the performance of the turbo code by swapping entries of the interleaver. The

interleaver modification algorithm provides optimisation of the weight spectrum by re-

taining those swaps which reduce the number of low weight codewords. During the

development of the interleaver modification algorithm many interleavers were produced

for the (1014,676) turbo code. These interleavers vary in terms of the level of optimisation

and lend themselves to this investigation. Table 2.1 lists these interleavers showing the

number of dmin codewords (multiplicity) and number of cycles having a length of four.

It is very interesting to observe that interleavers that were more heavily optimised had

dmin Multiplicity Cycles of length 4
13 71 8
13 6 11
13 5 13

Table 2.1: Counting cycles of length 4 for interleavers of increasing optimisation.

more cycles of length four. It has now become apparent that the number of length four

cycles does not indicate how well a turbo code will perform. Some information weight

two sequences are capable of producing a very short parity burst as the RSC goes from

the zero state on the first information bit and then gets reset to the zero state on the

second information bit. The problem is when these information weight two sequences

are interleaved such that both RSCs produce very short parity bursts. It was originally

thought that since the optimisation process removed these cycles, that the cycles count

would decrease. However, it is probably the case that these cycles have their bit indexes

interleaved differently such that both RSCs do not produce short parity bursts simulta-

neously. The optimisation produces swaps adjacent entries in the interleaver so it is likely

that cycles remain due to this localised swapping.
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2.4.4 The connection between interleaver spread and length

four cycles

The S-Interleaver design algorithm guarantees to spread information weight two se-

quences, whose 1 bits are less than S bits apart, so that the information bits are spaced

by at least R bits apart after interleaving. There is a spread associated with the taps

of the constituent RSCs and this spread can be seen from the H matrix of the turbo

code. The indexes of 1s from the fourth row of the H matrix of the (1014,676) turbo

code are {0, 1, 3, 339, 340, 341, 342, 345, 346, 348, 349, 350, 351, 352, 353}. The indexes up

to and including 337 are the 338 parity bits. The information indexes range from 338

to 1013. It can be seen that the range of spread for the information taps of the RSC is

St = 353 − 339 = 14. Therefore it is necessary to produce an interleaver with a spread,

S > St. The minimum value required for S in this case is S = 15 in order to guarantee

no cycles of length four exist. In order to confirm this theory a number of interleavers

Spread Cycles of length 4
10 228
12 146
14 36
15 0

Table 2.2: Counting cycles of length 4 for interleavers of increasing optimisation.

were produced with varying spread and each one was analysed for cycles of length four.

The results shown in Table 2.2 show that a design spread of 15 was required in order

to eliminate cycles of length four. However, it is conceivable that an interleaver with a

spread of less than 15 could be designed that would not generate cycles of length four.

For a cycle to exist all its vertices must fall upon a non-zero tap of the RSC.
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2.5 Conclusions

• The number of length four cycles is not the only factor indicating the performance

of a turbo code, since only a small percentage of information weight two sequences

cause a short parity burst from the RSCs.

• Cycles of length four cannot occur when the spread of an interleaver is greater than

the tap spread of the constituent RSC coders.

• It is possible that an interleaver with a spread less that the RSC coder tap spread

would not lead to cycles of length four. A cycle is only produced when all of its

vertices fall upon a non-zero tap of the RSC.
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3 Interleaver design

The best interleavers are those which compromise spread with randomness. Structured

interleavers can guarantee to spread sequences with two non-zero symbols. A problem

arises when there are four or more non-zero symbols in a sequence. Randomness is

introduced by swapping elements of the permutation vector whilst retaining the minimum

required spread. Research into interleaver design based upon the iterative decoder showed

little improvement in performance [35, 36, 14]. Iterative decoder convergence problems

are addressed by using lower order feedback polynomials in the constituent recursive

convolutional encoders (Section 4.3.2).

Described in [28] is a method of producing an interleaver based upon the RSC struc-

ture. There are input-weight-2 sequences that can produce a low parity weight when the

second input bit causes the state of the RSC to become zero. For the turbo coding scheme

to produce a high parity weight then these sequences must be interleaved such that for

the second RSC a high parity weight is produced. This is achieved by either generating

an interleaver that spreads these bits or by ensuring that the interleaved sequence does

not terminate the second RSC. Sequences that terminate the RSC are carefully analysed

and are broken by the interleaver so that the second RSC can produce a higher weight

[21] [37].
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3.1 Structured interleaver design - arithmetic

sequence

An interleaver is designed such that a group of R neighbouring elements have a minimum

difference S between each other. The interleaver is designed by producing an arithmetic

series. The constant difference, St between two consecutive elements in the series is

chosen to be in the region of
√
k, where k is the information length of an (n, k) code.

Then the value of the element in the ith position, Ei, is given by:

Ei = Sti mod k (3.1)

This method works particularly well when St is a factor of k− 1. For an illustrative case

k = 16 is chosen. The factors of k − 1 are 1,3,5 and 15. St = 5 is chosen since this is

closest to
√
k.

Ei = 5i mod 16

= {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75} mod 16

= {0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11}

In this case the values of St and R are optimal. The product S×R is k−1, the maximum

possible theoretical value[21]. For any case where
√
k is an integer a difference of

√
k± 1

can be chosen. This can be shown as follows:

(√
k + 1

)(√
k − 1

)

(3.2)

= k +
√
k −

√
k − 1 (3.3)

= k − 1 (3.4)
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It is important to note that St or R should not be defined as being equal to
√
k ± 1 as

this is only the case for values of k where
√
k is an integer. It is important to use a

difference that does not share a common divisor with k, otherwise the above algorithm

will repeat the numbers after the first k/gcd(k, St) entries. A computer program has been

written that can easily generate these interleavers. The computer program can overcome

the problem with repeated entries for cases where k/gcd(k, St) is greater than 1. This is

achieved by checking to see if each new value is equal to the starting value, if it is then

the new value is decremented and the algorithm continues. However, this reduces the St

value to St − 1.

3.2 S-Random interleaver design

Structured interleavers are limited to spreading just information-weight-two sequences.

This is because when spreading an information-weight-four sequence, although could

be broken into information-weight-two sequences, the interleaved pairs may combine or

overlap and be less than the required distance R apart. Random swapping of interleaver

elements has proven to be a popular partial solution to this problem[21]. In this work

swapping is performed, by a computer, to ensure that if |i− j| < R then |Ei − Ej| ≥ S.

3.3 Conclusions

• Structured interleavers are simple to produce and can guarantee the maximum

possible spread of information-weight-two sequences.

• Structured interleavers produce high multiplicities in the weight spectrum, par-

ticularly near the dminterms. Structure interleaver design methods to not always

effectively spread information-weight-four sequences.

• No guarantee is given that cycles created by information weight four (and above)
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sequences can be broken. However, the S-Random design discussed in Section 3.2

offers a partial solution.

• Random swapping helps break information weight four (and above) sequences.

• Provides a good starting point for the interleaver optimisation algorithm.
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4 Weight Spectrum Analysis

4.1 Techniques

4.1.1 Weight Spectrum Evaluation of Turbo Codes Based On

Two Identical Recursive Systematic Coders

Using Two Identical Recursive Systematic Coders the Computational

Complexity is Reduced

All input sequences must be coded such that the codeword produced has a weight greater

than, or equal to, the required minimum distance of the codebook. This means that any

input sequence that has a low information weight must produce a codeword that has a

high parity weight. For example, if a dmin = 12 is required and the input sequence has

a weight of four, the required minimum parity weight is 12− 4 = 8. The parity bits are

produced by both RSCs. A certain sequence, S, produces a parity sequence, Pu, at the

output of the upper RSC. S is interleaved to produce Si which the lower RSC uses to

generate a different parity sequence, Pl. Each sequence generated is both interleaved and

de-interleaved. For the purposes of weight spectrum evaluation only codewords that have

a weight less than some target weight require evaluation. The sequences generated to

give a low parity weight of the upper RSC will match interleaved sequences that produce

a low parity weight in the lower RSC since both RSCs are identical. If a target codeword

weight is set, then all sequences that produce a codeword weight less than this target

must be found. A hypothetical sequence, S = {1, 4, 5, 8}, which has an information

weight of four, might produce an upper RSC parity weight of five and a lower RSC parity
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weight of three to give a codeword weight of twelve. It at first appears that sequences

must be selected to produce the full parity weight in the upper RSC in case the lower

RSC produces a parity weight of zero. The lower RSC gave a lower parity weight than

the upper RSC because S is interleaved to give Si prior to coding by the lower RSC. We

could have chosen to generate the interleaved sequence Si and to de-interleave Si to give

S. Since Si, when coded, gives a parity weight of three then Si also has to be evaluated

and hence the sequence generator generates both S and Si. If the sequence generator

only produces sequences that when coded give up to half of the required parity weight,

four in this case, then S would not be generated and Si would have been generated. S

can now be produced by inverse interleaving Si. This can be extended to all the other

possible sequences and the sequence generator is only required to generate sequences that

produce up to half the target parity weight.

Algorithm 1 Generate sequence

Ensure: valid codeword
t ⇐ 0
state, s at time, t, st ⇐ 0
while t ≥ 0,Wp ≤ Wpmax

do
d ⇐ 0
s ⇐ rsc(s, d)
p ⇐ par(s, d)
if parity, p = 1 then
Wp ⇐ Wp + 1

end if
if s = 0 then
encode
update weight spectrum
t ⇐ t− 1

else
t ⇐ t+ 1

end if
end while
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Sequence Generation

While it is not practical to produce a trellis for the turbo coder, it is possible to draw

a trellis for just one of the RSCs. For the purposes of sequence generation only one

RSC is considered. The sequences are generated by tracing paths through the trellis and

accumulating parity and information weight. All possible paths that produce a combined

weight which is less than some target are generated. The combined weight is the sum of

the information weight and twice the parity weight as mentioned previously.

Algorithm 2 Interleaver

for i = 0 to k do
Zi ⇐ IΠi

end for

Interleaved Sequence Evaluation

Each sequence is interleaved (or inverse interleaved) before entering the second RSC.

The interleaving process is a reasonably straight forward process, so it is implemented

as a lookup table. Algorithm 2 shows how interleaving is performed and is the standard

method used in the literature, it is shown here for convenience. A code that has a

block length of 951 has 951 entries in the table. The value of each entry is unique and

determined initially by an S-Random interleaver design algorithm described is Section 3.2.

All entries have values ranging from 0 to 950 for a code having a block length of 951.

The interleaved sequence is produced from the values of the lookup table indexed by the

input sequence.

De-interleaving is the process by which the interleaved sequence is processed to give

the input sequence. Another lookup table is used for de-interleaving. Table 4.1 shows an

interleaver and the corresponding de-interleaver table for a fictitious code length of ten.
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i v(i)

0 9
1 2
2 5
3 8
4 1
5 4
6 7
7 3
8 0
9 6

i vi(i)

0 8
1 4
2 1
3 7
4 5
5 2
6 9
7 6
8 3
9 0

(a) (b)

Table 4.1: (a) interleaver lookup table. (b) inverse interleaver lookup table.

4.1.2 Computer program details: Weight spectrum analysis

A program was written that computes the weight spectrum of Parallel Concatenated

Convolutional Coders (PCCCs). The encoder is defined by its polynomials and its inter-

leaver.

The minimum hamming distance, dmin, of a code is a key metric in the code design.

The weight spectrum of a few terms starting with the dmin term also can be used to

estimate the code performance at the region of the error floor. The program described

below calculates the first few terms, including the dmin term, of the weight spectrum.

The program was extended by the addition of an optimisation algorithm that significantly

increases the dmin. Previously this was done manually but the complexity made achieving

a high dmin an impractical task. A high performance PC can now be used to achieve these

higher dmin values.

Sequence Generation

A fast algorithm has been developed which is based on factoring the overall codeword

weight into partitions which may be computed separately. Firstly the maximum code-

word weight required from the weight spectrum analysis is defined. This in turn defines
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the maximum parity bit weight of interest, wp(target), since the information weight is

given by the number of information bits in each codeword. All possible information

sequences are generated up to a maximum user defined information weight using the

tree search. The sequences are then interleaved and the corresponding parity output

sequences are evaluated and punctured. We retain those sequences output from RSC1

with parity weight greater than
wp(target)

2
. The procedure is repeated starting with RSC2

and the corresponding RSC1 parity sequences are then evaluated by inverse interleaving

the information sequences input to RSC2. The algorithm is as follows:

1. Generate next information sequence using tree search, input to RSC1, if there are

no more sequences goto 7

2. Calculate CRC and append to information sequence

3. Input to RSC1, evaluate parity sequence weight

4. Interleave sequence, input to RSC2, evaluate parity sequence weight

5. Record total weights for each codeword

6. Goto 1

7. Generate next information sequence using tree search, input to RSC2, puncture

output

8. Inverse interleave information sequence input to RSC2

9. Calculate CRC and append to information sequence

10. Calculate RSC1 parity weight

11. Interleave sequence and calculate RSC2 parity weight

12. Record total weights for each codeword
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13. If there are more sequences goto 7

14. Save weight spectrum to file and exit

Tail-biting

In order to correctly produce a codeword it is necessary to ensure that the state of

the constituent RSCs returns to its initial state. A traditional approach is to append

additional bits to force the state to zero. This has the disadvantage of increasing the

codeword size. An alternative solution is to choose an initial state such that the final

state is the same as the initial state. This is normally achieved by first encoding the

information sequence using an initial zero state, after the codeword has been produced

the resulting state of the RSC is used to index a lookup table. The entries of the lookup

table give the initial state required so that when the sequence is encoded a second time the

resultant state is the same as the initial state. This approach means that each codeword

is encoded twice. For the purposes of weight spectrum computation a much faster method

was developed.

The “Biggest Gap” Approach

A low weight codeword has its information bits clustered into short subsequences of

at least two bits. For a low weight codeword to be produced the state between these

subsequences must return to zero. If there is a large separation between two non-zero

information bits and the state has not returned to zero after encoding the first bit the

codeword produced will have a high weight. So it sufficient to find the largest gap between

the non-zero bits and set an initial state of zero and encode from this gap. The encoding

must continue past he the end of the sequence by wrapping around until the gap is

reached. If the state is non-zero at this point then the codeword has a high weight and

is beyond our range of interest.
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Weight Evaluation

The sequences that are produced by the sequence generator are shifted into the RSCs so

that the parity weight can be obtained. The parity weight is produced from the output

of two RSCs. Since one RSC has been used in the sequence generation above it is only

necessary to shift the sequence into the other RSC. The overall codeword weight is the

sum of the sequence weight, the upper RSC parity weight and the lower RSC parity

weight. Codewords that have a weight less than some user defined value are recorded

and a weight spectrum is produced.

CRC and Parity Puncturing

To obtain space for additional CRC bits we remove some parity bits from the codeword.

The puncturing is surprisingly more implementationally complex than the addition of the

CRC, this due to the complex nature of the sequence generator. The puncturing effects

the sequence generator since we must consider the parity weight after puncturing. At the

sequence generation stage we cannot derive the weight of the CRC as we have not yet

produced the entire information sequence. All that can be done is to assume the worst

case, all the punctured parity bits will be replaced with zero bits. Potentially there are

more sequences generated due to the parity weight loss, that is, the sequences have a

lower weight and are therefore output from the sequence generator.

The generated information sequences are then applied to a CRC evaluator, the CRC

is appended to the information sequence. The information and CRC are then encoded by

the Turbo coder with puncturing applied, this time it is necessary to produce both parity

outputs as the sequence is now different from the sequence produced by the sequence

generator above. Remember that without the puncturing the sequence generator had

already given us one of the parity output weights, we only had to find the other.
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4.1.3 Interleaver Modification

The performance of the turbo coder can be improved by modifying the interleaver. The

modified interleaver works in the same way as the interleaver described above in Algo-

rithm 2 but has a modified permutation resulting from the method explained below.

Entry Swapping

Sequences that produce a total weight less than the target are recorded. The recorded

sequences are used as the basis from which the interleaver is modified. The sequence

contains the positions of the 1s in the information input. For each of the elements in

the sequence the corresponding entry in the interleaver lookup table can be swapped

either up or down. For each entry in the lookup table there is a corresponding flag

that indicates that the corresponding entry has been modified. This prevents entries

being swapped back when the same index occurs in another sequence. Using this method

alone caused the interleaver modifier algorithm to lock up once all the flags are set. An

adjustment to the algorithm was made so that if a lockup is detected the flags are cleared

to allow modification. Allowing further modification means that an entry can be swapped

more than once in the same direction, but this is at the expense of damaging previous

modification attempts.

Re-evaluation of Codeword Weight After Interleaver Modification

The interleaver is modified according to the elements of each bad sequence. After the

interleaver has been modified for a particular sequence the codeword weight of that se-

quence is calculated to check that an improvement has been made. When subsequent

sequences are used to modify the interleaver it is possible that modifications made for

previous sequences are damaged. After modifications have been made for all sequences

the process of generating and evaluating sequences must be restarted. On this rerun any

damaged modifications will be detected and further modifications to the interleaver will
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be made as required. This cycle may repeat many times and currently there is no way

to determine the number of cycles required for any given coder and interleaver.

Algorithm 3 Interleaver Modification

for i = 0 to k − 1 do
flagi ⇐ false

end for
for j = 0 to mtotal − 1 do
if weight(Ci) < wtarget then
swapped ⇐ 0
for i = 0 to k − 1, swapped = false do
if Cj(i) = 1 then
if flagi−1 = false then
flagi−1 ⇐ true
swap(Πi−1,Πi)
swapped ⇐ true

else if flagi+1 = false then
flagi+1 ⇐ true
swap(Πi+1,Πi)
swapped ⇐ true

end if
end if

end for
end if

end for

4.1.4 Computer program details: Interleaver modification

algorithm

After all the above processes we now have identified all information sequences that give

rise to a low codeword weight. By modification of the interleaver it is possible to improve

the interleaver so that a higher codeword weight is produced. The works by modifying

elements of the interleaver whose indexes correspond with the indexes of the non-zero

information bits. The modification made is to swap the element with its nearest neighbour

either way depending on which modification improves the codeword weight. Once an

interleaver modification has been made a flag is set so that that element is not modified
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later by another information sequence. It was found that this approach would lock up

when all the flags were set and no modifications were made. The solution was to detect

this and then clear the flags and continue the modification process. The algorithm proves

to be very successful and results in a good interleaver design that is tailored to the

specified encoder design.

4.2 BPSK Turbo codes

4.2.1 Rate 2/3 Turbo code

A dfree of 14 was achieved for an interleaver length of 676 using a (1014,676) parallel

concatenated turbo code. Both RSCs are identical and have eight states. The coder

structure is shown in Figure 1.8. The dfree of 14 was not achieved immediately, but was

achieved after first reaching 13. As the multiplicities in Turbo10 were much lower for

terms upto a weight of 13 a target dfree of 13 whose chosen. The algorithm soon achieved

this target so it was decided that the algorithm should be made to work harder and try

to produce a dfree of 14. A software problem was later found that meant that a very few

sequences weren’t being evaluated correctly. After this bug was fixed it was found that

Turbo14 also has a dfree of 13. Although the algorithm did not achieve a dfree of 14 the

multiplicity of the dmin term was reduced from 71 down to 5.

4.2.2 Weight Spectra and Performance of k = 676 codes

The (1014,676) codes whose weight spectra are shown in Table 4.3, Table 4.4 and Table 4.5

show near identical performance as illustrated in the frame error rate plots in Figure 4.1.

The frame error rate plot also shows the Shannon limit curve for comparison, the results

are within 0.6dB of Shannon’s limit at the frame error rate given for Eb

No
= 2.5dB. The

bit error rate plots are shown in figure 4.2.
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Figure 4.1: Frame error rate curves for four different 2/3 rate codes, k=676 bits.
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Figure 4.2: Bit error rate curves for four different 2/3 rate codes, k=676 bits.
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Union Bound

Codes Turbo14(dmin = 13) and Turbo14a(dmin = 13) have very similar weight spectra

as can be seen from Table 4.4 and Table 4.5. The code Turbo13 also has a similar

weight spectrum if the d = 13 entry is ignored and only d ≥ 14 entries are considered.

The effect of the d = 13 entry can just be seen in the frame error rate plot of Figure 4.1.

Turbo14(dmin = 13) and Turbo14a(dmin = 13) have near identical frame error rate curves

as may be expected from the near identical weight spectra. The union bound calculated

from the weight spectra also show these codes to have very similar performance.

Union Bound Calculation

For BPSK the probability of decoder error for a codeword of distance d is given by

Pe(d) =
1

2
Md erfc

(

√

Eb

No

d
k

n

)

(4.1)

The overall probability of decoder error is calculated for the entire range of distance from

dmin to n.

Pe =
n
∑

d=dmin

1

2
Md erfc

(

√

Eb

No

d
k

n

)

(4.2)

In cases where the entire weight spectrum is not known the union bound can be evaluated

from the first N terms of the weight spectrum to approximate frame error rate.

FERUB =

dmin+N
∑

d=dmin

1

2
Md erfc

(

√

Eb

No

d
k

n

)

(4.3)

Similarly the bit error rate is given by

BERUB =

dmin+N
∑

d=dmin

1

2

wd

k
erfc

(

√

Eb

No

d
k

n

)

(4.4)

For the weight spectra shown in Tables 4.2, 4.3, 4.4 and 4.5 the union bound has
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been calculated for a range of Eb/N0. The tables illustrate how each term of the weight

spectrum influences the union bound calculated for Eb/N0 = 3dB. As the union bound

is the summation of the terms derived from the weight spectrum the contribution each

term has can be illustrated as bars in the right-most column of the tables. From the

bars the effect each term has can be visualised. See Appendix B for the derivation of

equation (4.3).

Weight Multiplicity Info. Weight UB Contrib. Eb/N0 = 3db

9 1 2 4.81678× 10−7

10 4 9 4.83513× 10−7

11 19 49 5.78915× 10−7

12 31 89 2.38967× 10−7

13 66 231 1.2912× 10−7

14 166 673 8.26416× 10−8

15 362 1552 4.59673× 10−8

16 753 3549 2.44382× 10−8

17 1727 8582 1.4351× 10−8

18 3626 18551 7.72735× 10−9

19 7310 38596 4.00087× 10−9

20 13764 74598 1.93721× 10−9

21 25594 141090 9.27412× 10−10

22 45595 254231 4.2581× 10−10

23 78176 440953 1.88347× 10−10

24 128807 732854 8.01303× 10−11

25 207889 1191509 3.34209× 10−11

Table 4.2: Computed weight spectrum for Turbo10.
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Weight Multiplicity Info. Weight UB Contrib. Eb/N0 = 3db

13 71 257 1.38902× 10−7

14 163 650 8.1148× 10−8

15 364 1573 4.62212× 10−8

16 739 3452 2.39839× 10−8

17 1693 8366 1.40685× 10−8

18 3574 18367 7.61654× 10−9

19 7241 38250 3.96311× 10−9

20 13800 74843 1.94228× 10−9

21 25264 139275 9.15454× 10−10

22 45140 251730 4.21561× 10−10

23 76904 434206 1.85282× 10−10

24 127480 725521 7.93048× 10−11

25 204024 1169786 3.27995× 10−11

26 320469 1847259 1.33239× 10−11

27 486695 2818462 5.23677× 10−12

28 727545 4229474 2.02727× 10−12

29 1062896 6198778 7.67454× 10−13

Table 4.3: Computed weight spectrum for Turbo13.

Weight Multiplicity Info. Weight UB Contrib. Eb/N0 = 3db

13 6 29 1.17382× 10−8

14 150 566 7.46761× 10−8

15 368 1602 4.67292× 10−8

16 803 3772 2.6061× 10−8

17 1646 8154 1.3678× 10−8

18 3528 18130 7.51851× 10−9

19 7160 37711 3.91877× 10−9

20 13865 74938 1.95142× 10−9

21 25795 142300 9.34695× 10−10

22 45586 254250 4.25726× 10−10

23 77447 437249 1.8659× 10−10

24 129211 735973 8.03816× 10−11

25 205761 1179845 3.30788× 10−11

26 322611 1859864 1.34129× 10−11

27 490693 2842251 5.27979× 10−12

28 731543 4253628 2.03841× 10−12

29 1070463 6242890 7.72918× 10−13

Table 4.4: Computed weight spectrum for Turbo14a.
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Weight Multiplicity Info. Weight UB Contrib. Eb/N0 = 3db

13 5 23 9.78186× 10−9

14 151 574 7.51739× 10−8

15 365 1595 4.63482× 10−8

16 811 3808 2.63206× 10−8

17 1643 8147 1.3653× 10−8

18 3542 18203 7.54834× 10−9

19 7147 37637 3.91166× 10−9

20 13886 75052 1.95438× 10−9

21 25858 142665 9.36978× 10−10

22 45443 253394 4.2439× 10−10

23 77227 435978 1.8606× 10−10

24 129128 735412 8.033× 10−11

25 205530 1178682 3.30416× 10−11

26 322601 1859747 1.34125× 10−11

27 490340 2840123 5.27599× 10−12

28 731136 4251321 2.03728× 10−12

29 1069842 6239221 7.7247× 10−13

Table 4.5: Computed weight spectrum for Turbo14.
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Error Frames Recorded From Code Simulation

Weight spectra were also produced from the results of the simulation with Eb/N0 = 3dB.

It is important to note that the simulation gives a good estimate of the code’s perfor-

mance and is not intended to produce a complete weight spectrum like those discussed

above. These weight spectra shown in Tables 4.6, 4.7, 4.8 and 4.9 are plotted in Fig-

ures 4.3, 4.4, 4.5 and 4.6 as histograms of the number of codewords having a certain

weight.

Inspecting the errored frames produced from the simulation will help identify a con-

nection between the dmin of a code and performance. Whilst the Turbo10 code has a

dmin = 9 Table 4.6 shows that most of the error frames have a codeword weight of 11.

This coincides with the maximum union bound contribution from the d = 11 term of the

weight spectrum in Table 4.2. From both the union bound contribution and the simu-

lation results it can be seen that the d = 11 term causes the most loss of performance

for the Turbo10 code. Thus the dmin = 9 parameter does not have the largest influence

on code performance. However if the Turbo13 code is now considered we see that the

dmin = 13 term has the largest influence on the codes performance as shown in Table 4.7.

The largest contribution to the union bound is due to the d = 13 term as can be seen in

Table 4.3. Generally it has been observed that it is the combination of the multiplicities

of the first few non-zero terms of the weight spectrum that have the greatest impact on

the performance of a code. In many cases the dmin term alone does not determine the

performance of a code.
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Weight Multiplicity Info. Weight

10 4 8
11 10 25
12 2 7
13 2 10
14 3 15
15 0 0
16 1 6
17 0 0
18 2 11
19 0 0
20 1 7
21 0 0
22 1 4
23 0 0
24 2 23

Table 4.6: Recorded error frames for Turbo10.
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Figure 4.3: Recorded error frames for Turbo10.
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Weight Multiplicity Info. Weight

13 51 202
14 38 161
15 28 139
16 19 112
17 13 75
18 14 90
19 10 70
20 8 61
21 7 61
22 4 29
23 4 43
24 2 18
25 3 29
26 1 11
27 3 34

Table 4.7: Recorded error frames for Turbo13.
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Figure 4.4: Recorded error frames for Turbo13.
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Weight Multiplicity Info. Weight

13 3 18
14 19 89
15 15 84
16 12 65
17 14 89
18 6 44
19 6 44
20 7 55
21 5 47
22 3 27
23 2 19
24 2 22
25 2 21
26 1 13
27 4 45

Table 4.8: Recorded error frames for Turbo14a.
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Figure 4.5: Recorded error frames for Turbo14a.
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Weight Multiplicity Info. Weight

14 14 60
15 21 121
16 5 31
17 3 18
18 8 50
19 3 19
20 3 22
21 4 34
22 2 18
23 4 44
24 3 32
25 0 0
26 0 0
27 2 23
28 1 16

Table 4.9: Recorded error frames for Turbo14.
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Figure 4.6: Recorded error frames for Turbo14.
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4.2.3 Rate 4/5, (4050,3240) Turbo code

It is generally known that a code with higher block length performs better than a code

with a low block length. To apply this knowledge to a turbo code the block length was

increased from n = 1014 to n = 4050, giving a (4050,3240) code. Due to the higher

code rate the optimised interleaver achieves dmin = 10 for sequences of up to information

weight four. The weight spectrum was evaluated for sequences with information weight

up to six and this is shown in Table 4.10.

Weight Multiplicity Info. Weight

8 1 5
9 10 54
10 329 1274
11 775 3368

Table 4.10: Computed weight spectrum for (4050,3240) code

Results in Figure 4.7 show the frame error rate to be within 0.5dB of Shannon’s limit

constrained to a BPSK modulation. The bit error rate is shown in Figure 4.8. At a

frame error rate of 10−3 the k = 676 code requires an Eb

No
of approximately 2.5dB whilst

the k = 3240 code requires an Eb

No
of 2.8dB. The code rate is 0.8 compared to 0.667, a

rate gain of 0.8dB, therefore the k = 3240 code has a net gain of 0.5dB. As the k = 676

code was within 0.6dB of the Shannon limit, the higher block length code has the better

performance as predicted confirming the well accepted trend.

Weight Multiplicity Info. Weight

9 10 54
10 45 247
11 814 3502
12 2034 9507

Table 4.11: Computed weight spectrum for k=3240, dmin = 11 @ iw=4
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Figure 4.7: Frame error rate curves for four different 0.8 rate codes, k=3240 bits.
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Figure 4.8: Bit error rate curves for four different 0.8 rate codes, k=3240 bits.
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4.3 4-PAM code performance

In this section we discuss the comparison of BPSK and 4-PAM. For the 4-PAM scheme

the symbols are mapped to the constellation of −3d, −d, d and 3d. Appendix B explains

this in more detail if required.

4.3.1 (8100,6480) Turbo code

A block length of n = 8100 was chosen since this would give the same number of symbols

per frame as the n = 4050 codes give for BPSK. The code was optimised for for dmin

produced an improvement from dmin = 8 to dmin = 32. The frame error rate performance

is plotted in Figure 4.9 in comparison with the Shannon limit for the block length and

rate.
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Figure 4.9: Frame error rate curves for four different 0.8 rate codes, k=6480 bits.
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Figure 4.10: Bit error rate curves for four different 0.8 rate codes, k=6480 bits.

4.3.2 k=6478 Turbo code

Decoder convergence problems led to the investigation of codes with a lower order feed-

back (divisor) polynomial, the order was reduced from three to two. Since the period

of the constituent RSCs was reduced to three from seven an information bit length of

k = 6480 could no longer be used since 6480 is divisible by three and a tail biting code

is not available in this circumstance. A new information bit length of 6478 was chosen.

To investigate the performance two different sets of polynomials were used; first set

138, 158, 78 will be compared against the second 158, 178, 78. The performance of the

k = 6478 code is shown in Figure 4.9 and Figure 4.10.

4.3.3 Comparing BPSK and 4-PAM

The modulation constraint of 0.49dB is applied to the Shannon limit for a rate 2/3 code

when BPSK modulated. For 4-PAM the modulation constraint is reduced to 0.13dB
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Figure 4.11: Comparison of Frame error rate for 2-PAM and 4-PAM codes

for the same code rate. From this we could hope to realise a 0.36dB improvement in

performance from using 4-PAM coding. Firstly the union bound for 4-PAM was derived

in order to compare the actual performance of the codes against the best performance

obtainable from a code with this weight spectrum.

4.3.4 Union Bound for 4-PAM

For 4-PAM the union bound can be calculated from the first N terms of the weight

spectrum.

FER =

dmin+N
∑

d=dmin

1

2
Nd erfc

(

√

3

5

Eb

No

d
k

n

)

(4.5)

This bound is very loose due to the choice of worst case Euclidean distance. See Ap-

pendix B for the derivation.
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Weight Multiplicity Info. Weight

13 5 23
14 151 574
15 365 1595
16 811 3808
17 1643 8147
18 3542 18203
19 7147 37637
20 13886 75052
21 25858 142665
22 45443 253394
23 77227 435978
24 129128 735412
25 205530 1178682
26 322601 1859747
27 490340 2840123
28 731136 4251321
29 1069842 6239221

Table 4.12: Computed weight spectrum for Turbo14.

4.4 Using The Union Bound as a Tool for Selecting

Good Performance Codes

In order to determine just how significant the value of dmin is on our code’s performance

the union bound was initially calculated using the first seventeen terms of the weight

spectrum as shown in table 4.12. The union bound was then calculated excluding the

dmin term and as the plot in figure 4.12 shows there was no significant effect on the union

bound. Further investigation shows that only the first eight or nine terms are required

to calculate the union bound for Eb/No > 2dB. Figure 4.12 tells us that improving the

dmin from 13 to 14 will give negligible code improvement, whereas improving the dmin to

15 or above would lead to improved performance. The bit error rate plot in Figure 4.13

shows the same characteristics as the frame error rate plot shown in Figure 4.12.
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Figure 4.12: Frame error rate union bound computed from subsets of the weight spectrum
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5 CRC Outer Code

Work presented in this chapter has been submitted and presented at the IEEE ISIT2004

conference[38], see the paper at the end of the thesis.

5.1 Introduction

There are several advantages in using a CRC or an outer BCH code[39, 40, 41] in con-

junction with a turbo code[8], iteratively decoded. It provides a useful stopping criterion

for the decoder in conjunction with any other stopping criteria and also strengthens code-

word verification further discussed in Section 5.5. It is shown below that a CRC may

be used without associated code rate loss and without loss in performance by optimised

puncturing of some of the parity bits. Only high weight codewords are punctured so that

the dmin of the code is not changed. The weight spectrum of the code is evaluated and

checked after introduction of the CRC and the punctured parity bits. Surprisingly, a

short CRC of a few bits duration produces a dramatic improvement due to a substantial

thinning of the weight spectrum. The approach used is to evaluate the weight spectrum

of the punctured code in conjunction with optimisation of the interleaver design so that

the weight spectrum is better than that of the original code. The fast algorithm for

evaluation of the weight spectrum of a turbo code with CRC and arbitrary parity bit

puncturing is described as well as the simulation results of the optimised code.
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5.2 Encoder Structure

The encoder shown in Figure 5.1 consists of an inner code and an outer code. The outer

code is the CRC and the inner code is a PCCC turbo code. When all k information

π

RSC1

RSC2

CRC

matrix
Puncturing

Figure 5.1: The CRC is shown as an outer code. The parity output from the RSCs is
punctured.

bits have entered the encoder the CRC remainder is then input into the Turbo encoder.

To maintain the code rate it is necessary to puncture m parity bits to make room for

the CRC remainder. It is also necessary to puncture a further m
(

1
R
− 1
)

bits to make

room for the parity bits associated with the CRC remainder. A total of m
R
parity bits are

punctured in order to maintain a code rate that is equivalent to the non-CRC code.

5.3 Weight Spectrum Analysis

Although some methods have been given for weight spectrum analysis for turbo codes in

the literature[25, 37], these do not cover the case for a turbo code with CRC as well as

arbitrary parity bit puncturing. The fast algorithm has been developed which is based on

factoring the overall codeword weight into partitions which may be computed separately,

see Section 4.1.2. Firstly the maximum codeword weight required from the weight spec-

trum analysis is defined, dmax. This in turn defines the maximum parity bit weight of

interest, wp(target), since the information weight is given by the number of information bits

in each codeword. All possible information sequences are generated up to a maximum
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user defined information weight using a tree search associated with the trellis of RSC1.

The sequences are then interleaved and the corresponding parity output sequences are

evaluated and punctured. Sequences that produce a parity sequence weight more than

wp(target)

2
are discarded. Only sequences with parity weight less than or equal to

wp(target)

2

are further processed by obtaining the RSC2 parity sequence weight. The procedure is

repeated starting with RSC2 retaining output sequences with a parity sequence weight

less than or equal to
wp(target)

2
. The corresponding RSC1 parity sequences are then eval-

uated by de-interleaving the information sequences input to RSC2 and supplying them

to RSC1. Sequences that have a total codeword weight less than or equal to dmax are

recorded in the weight spectrum. The algorithm is as follows:

1. Generate next information sequence with required parity weight using tree search

of RSC1 trellis, if there are no more sequences go to 7

2. Calculate CRC and append to information sequence

3. Re-input to RSC1, evaluate parity sequence weight after puncturing

4. Interleave information plus CRC sequence, input to RSC2, evaluate parity sequence

weight after puncturing

5. Record total weights for each codeword generated

6. Go to 1

7. Generate next information sequence with required parity weight using tree search

of RSC2 trellis

8. Inverse interleave information sequence input to RSC2

9. Calculate CRC and append to information sequence

10. Calculate RSC1 parity weight after puncturing
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11. Interleave sequence and calculate RSC2 parity weight after puncturing

12. Record total weights for each codeword generated

13. If there are more sequences go to 7

14. Evaluate the weight spectrum from all retained codewords

5.4 Weight Spectrum of Non-CRC and CRC Turbo

Codes

The probability of the decoder making an error in decoding a codeword transmitted over

a channel with AWGN is bounded by the classic equation, Equation (5.1), where md is

the number of codewords with a Hamming weight of d.

Pe ≈
1

2

dmax
∑

d=dmin

Md erfc

(

√

Eb

No

d
k

n

)

(5.1)

A full weight spectrum consists of values for md where d = dmin, dmin + 1, . . . , dmax.

When a full spectrum is available it is possible to upper bound and lower bound Pe using

Equation (5.1) by changing the range of d.

In order to decrease the probability of decoder error it is necessary to decrease the

multiplicities, particularly for the first few terms, in the weight spectrum. A procedure

for improving the weight spectrum beyond that produced by the CRC is based upon

interleaver optimisation and is presented in Section 5.8.

Weight Multiplicity Info. Weight

11 7 29
12 132 393
13 282 1011

Table 5.1: Partial weight spectrum of a k = 676, rate = 2
3
code.
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Weight Multiplicity Info. Weight

11 5 11
12 13 39
13 9 26

Table 5.2: Partial weight spectrum of a k = 676, rate = 2
3
code, 6 parity bits punctured,

4 bit CRC.

Table 5.1 is the first few terms of the weight spectrum for a k=676, rate 2
3
code without

the benefit of a CRC. Table 5.2 is the weight spectrum for a similar code using a CRC

of length 4 bits.

The CRC used has a degree four primitive polynomial of 238 and has sixteen possible

states. We can therefore expect that for a large fraction (15/16) of codewords will result

in a non-zero CRC remainder producing high codeword weight after turbo encoding. The

effect of this is that fifteen out of sixteen codewords would benefit from an increase in

weight due to the contribution of the CRC remainder bits and can be removed from the

weight spectrum in Table 5.1. This spectral thinning effect is visible when Table 5.2 is

compared to Table 5.1.

5.5 Decoding improvement due to CRC

The turbo MAP decoder is iterative and can fail to converge to one particular codeword.

Often the decoder will alternate between two, sometimes more, solutions. With the CRC

being used as an outer code, it can be utilised in the decoder to verify that the decoder

has reached the correct solution by performing a simple CRC evaluation.
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5.6 Maximum Likelihood Asymptote (MLA)

The MLA shown in Figure 5.2 is calculated from the weight spectrum of Table 5.1. Using

Equation (5.1) for Eb

No
= 2.5dB with the weight spectrum shown in Table 5.2:

Pe ≈ 1

2

13
∑

d=11

md erfc

(

√

1.778 · d · 676

1014

)

=
1

2

[

1.6366× 10−6 + 1.2484× 10−6 + 2.5433× 10−7
]

= 1.5697× 10−6

This value, along with other values, is plotted in the graph of Figure 5.2. The MLA

gives an approximation to the error floor for Eb

No
> 2.8dB. Figure 5.2 for the simulation

results can be seen to approach the plotted MLA. The MLA may be used to estimate the

performance of this code and the performance of any new code before lengthy simulations

are carried out. Since the simulation results can take several weeks to compute, the MLA

saves much time allowing an earlier indication of the codes performance. With the weight

spectrum available the MLA may be calculated immediately.

5.7 Simulation Results

Figure 5.2 shows the simulation results for the CRC and non-CRC codes. When a low

frame error rate is required the CRC code has better performance than the non-CRC

code. This can be seen at the lower frame error rates in Figure 5.2. The CRC code has a

lower error floor confirming the predictions from the MLA and weight spectrum analysis.

The results from the simulation show the performance of the CRC code to be within

0.36dB from Shannon’s Sphere Packing Bound limit [13, 42] constrained for binary trans-

mission. As the MLA is a union bound (upper bound) code performance can be better

as shown by the CRC curve in Figure 5.2.
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Figure 5.2: Simulation of a k = 676, rate = 2
3
code. Comparing non-CRC code with

CRC code.

5.8 Weight Spectrum Improvement Through

Optimisation of Interleaver

The weight spectrum is heavily dependent upon the selection of a suitable interleaver. As

the weight spectrum is evaluated the interleaver may be modified to improve the minimum

distance, dmin, to a target value, dmin(target). For all codewords that have a distance less

than the required target, dmin(target), a modification is made to the interleaver. Each of

these codewords may be represented by a vector of indices to the non-zero information

bits in each codeword. The corresponding elements of the interleaver are swapped with

their neighbour (to maintain a reasonable S value), starting with the first information

index then taking each index in turn until the codeword weight is raised to dmin(target) or

higher. Several iterations of weight spectrum evaluation and interleaver modification are

necessary as each modification made has an effect on other codewords.
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5.9 Conclusion

The results of many code designs of different lengths and code rates, together with the

introduction of the CRC, with parity bit puncturing and interleaver optimisation show

that the CRC code has a significant performance gain particularly in the region of the

error floor, compared to the non-CRC code. This improvement is evident in the weight

spectrum as well as in the simulation results.
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6 Ordered Reliability List Decoder

6.1 Abstract

Interactive satellite terminals allow satellite links using Variable Coding and Modulation

(VCM), as featured in the DVB-S2 standard, to achieve high levels of bandwidth and

power efficiency. One of the limitations of efficiency is the coding/modulation used for

the return links relies upon an iterative decoder. A new type of decoder suitable for

next generation DVB-RCS systems is presented. It is based upon an ordered reliability

decoder in conjunction with a Turbo code/ MAP decoder. The decoder algorithm is

described and analysed and some results are presented. For the example code cited, it

is demonstrated that the hybrid decoder gives an improvement of 0.45dB compared to

the standard Turbo MAP decoder currently specified in the DVB-RCS standard and is

about 0.3dB from the sphere packing bound.

6.2 Introduction

The DVB-S2 broadcasting standard [43] allows for a transmission mode in which Vari-

able Coding and Modulation (VCM) and Adaptive Coding and Modulation (ACM) can

be employed, whereby time division multiplexed datagrams can use different modulation

and coding formats so that the average data throughput can be maximised to classes

of receiving terminals with different G
T

performances [44]. Significant improvements in

data throughput can be realised particularly when a return channel is available[45]. The

satellite return channel standard DVB-RCS standard[46]was finalised in 2004 before the

DVB-S2 standard and it is highly likely in the near future that a second generation DVB-

81



RCS standard will be considered that will feature VCM. The DVB-RCS standard features

parallel concatenated Turbo codes and iterative decoding and was originally proposed by

Berrou et al[47]. Improvements to these original codes, using higher memory for the

constituent recursive encoders have been proposed by Berrou at al [48, 49]. The use of

higher memory tends to improve the minimum Hamming distance of the Turbo code at

the expense of iterative decoder convergence.

It has been noted by several researchers that the iterative decoder limits the perfor-

mance achievable for Turbo codes[50, 24]. It has been observed in many cases where the

Turbo MAP decoder fails to converge, that usually only a few bits remain in error[51].

In this work it is proposed that Ordered Reliability List Decoding is used to correct the

remaining bits in error. Analysis is provided of the decoder algorithm and results for an

example code which show the effectiveness of the decoder. Ordered reliability techniques

(also known as G-space techniques) have previously been applied to BCH codes by Wu

and Hadjicostis[52]. Their work shows simulation results for a (128, 64, 22) extended

BCH code.

6.3 An Algorithm for a Hybrid Ordered Reliability

List Decoder / Turbo MAP decoder

In the proposed scheme an Ordered Reliability List Decoder (ORLD) is provided with

extrinsic probability outputs plus the channel values after each MAP decoding cycle in the

Turbo decoder. The ORLD takes as input the A Posteriori Probabilities (APP) from the

output of the MAP decoder. In many cases the MAP decoder can converge to just a few

bits in error in about four iterations. It has been observed that in many cases, when the

Turbo MAP decoder fails, that further iterations are unable to alter the output because

the extrinsic information saturates or shows evidence of unstable exchanges of extrinsic
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information between the constituent decoders. The ORLD is able to break this cycle by

forcing the constituent decoders’ output to best match possible transmitted codewords.

After each Turbo MAP decoder iteration the output APP’s are supplied to the ORLD

which then firstly orders them in terms of their reliability, and then generates a list of

candidate codewords. Each candidate codeword is correlated with the received vector

which is denoted as R. The modulation is assumed to be BPSK or QPSK. After demod-

ulation the values of the received vector are ±1 with added noise (AWGN). Note that the

candidate codewords are not correlated with the extrinsic information from the Turbo

MAP decoder since these may have become saturated during the Turbo MAP decoding.

Also note that the Turbo MAP decoder is not constrained to produce a codeword, this

being a feature of convergence failure[51]. However, the ORLD has the advantage that it

always produces codewords.

Advantages of Ordered Reliability List Decoding

• Overcomes non-convergence of Turbo MAP decoder.

• Always results in a valid codeword where the Turbo MAP decoder doesn’t make

this promise.

• Many codewords could be analysed simultaneously, an advantage on massively par-

alleled architectures, eg. FPGA.

6.3.1 Detailed Operation of the Ordered Reliability List

Decoder

In the standard manner first proposed by Dorsch [53], the received vector, R, is first

ordered according to the reliability of each bit. From the received vector n− k erasures

are made to the least reliable bits. The erased bits are then solved using a Gaussian

elimination process applied to the parity check matrix, H, of the Turbo code. It is
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relatively simple to obtain the parity check matrix of the Turbo code from the parity

check matrices of the component codes[18]. It is sometimes not possible to solve for a

few of the erased bits, in this case the bits are un-erased and the next bits erased. The

Gaussian elimination process is then continued until there are n− k erasures that can be

solved. The process ensures that all of the erased bits are solved, least reliable first.

It is sometimes the case that errors occur in the k un-erased bits, in this case the

solved codeword will not correspond to the transmitted codeword. Many of the solved

bits will be in error as they are derived from the erroneous bit. This situation can easily

be detected since the derived codeword will have a large Euclidean distance from the

received vector due to the many solved bits being incorrect. A standard solution to

this problem is to systematically guess bit values in the un-erased bit positions. A fast

incremental, correlation approach is proposed below, so that the likely error positions are

eliminated first. The decoding procedure stops when the codeword, Sbest(x), is produced

which gives the lowest Euclidean distance from the received vector or the highest cross-

correlation, see Section 6.4. This codeword is either not in error or is an MRL error.(A

codeword closer to the received vector than the transmitted codeword, so that a maximum

likelihood decoder would also fail to decode correctly this received vector). Whilst the

ORLD is not limited by convergence problems, it is limited in practical applications by

the computational complexity involved in guessing more than a fews bits in error.

6.4 Cross-correlation of Codewords to Determine

the Most Likely Codeword

In decoding the codeword with the smallest Euclidean distance from the received vector

is the optimum choice having the maximum likelihood of being the correct codeword.

This optimal choice will correlate stronger than other codeword choices to the received

vector. The cross-correlation is used in this section in order to simplify the mathematical
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Figure 6.1: Performance of a (400,200), 1
2
rate, Turbo code comparing the iterative MAP

decoder with the hybrid MAP-ORLD decoder.

description. The MAP log-likelihood outputs, A, are permuted by an ordering a such

that

|Aa0 | ≥ |Aa1| ≥ · · · ≥ |Aan−1| (6.1)

Π is a permutation vector defined as Πj = aij where i0, i1, . . . , ik−1 are the smallest index

values from {0, 1, . . . , n− 1} such that

rank

[

gΠ0 gΠ1 · · · gΠk−1

]

= k (6.2)

where gi is the ith column in the generator matrix, G. The remaining elements of Π are

derived from the remaining indexes such that

|AΠi
| ≥ |AΠi

| ≥ · · · ≥ |AΠi
| i = 0, 1, . . . , k − 1 (6.3)

|AΠi
| ≥ |AΠi

| ≥ · · · ≥ |AΠi
| i = k, k + 1, . . . , n− 1 (6.4)
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The received vector, R, is permuted using the same permutation. The k most reliable

bits of the permuted received vector, S, are defined as

Si =
1− sign(RΠi

)

2
i = 0, 1, . . . , k − 1 (6.5)

Note that S takes on values of 0 or 1 and is de-mapped from the BPSK levels of ±1. The

columns of the G matrix can also be permuted to give G′.

G′
i,j = Gi,Πj

i = 0, 1, . . . , k − 1 j = 0, 1, . . . , n− 1 (6.6)

An initial permuted codeword is produced from S and G′.

C = S ·G′ (6.7)

Correlation of the initial codeword is given by

X =
n−1
∑

i=0

(1− 2Ci)RΠi
(6.8)

=
k−1
∑

i=0

|RΠi
|+

n−1
∑

i=k

(1− 2Ci)RΠi
(6.9)

Later the correlation partial products will be used, these are represented by the vector,

V

Vi = (1− 2Ci)RΠi
i = 0, 1, . . . , n− 1 (6.10)

Modification codewords are generated from the ‘G’ matrix of the code

M = Q ·G′ mod 2 (6.11)

Mj =
k−1
∑

i=0

Qi ·G′
i,j mod 2 j = 0, 1, . . . , n− 1 (6.12)
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Where Q is a vector containing a few non-zero bits placed at indexes where modification

is desired based on the bit reliability at that index being low. Since there are only a few

non-zero bits in Q it is more efficient to select corresponding rows from the ‘G’ matrix.

A record of the guessed bits is kept in a list, f .

Mj =

p−1
∑

q=0

Gfq ,j mod 2 j = 0, 1, . . . , n− 1 (6.13)

The correlation of the new codeword is given by

Y =
n−1
∑

j=0

Vj (1− 2Mj) (6.14)

=
n−1
∑

j=0

Vj − 2
n−1
∑

j=0

VjMj (6.15)

= X − 2
n−1
∑

j=0

VjMj (6.16)

Typically there are only about n−k
2

positions in M that are non-zero, thus the term of the

right of Equation(6.16) involves few calculations. The evaluation of modified codewords

only requires summation of the few non-zero elements of this term:
∑n−1

j=0 VjMj. The

best codeword has the largest negative value for
∑n−1

j=0 VjMj and with this approach the

most likely candidate codeword can be quickly determined. Moreover the procedure lends

itself to a fast, parallel implementation of the decoder.

6.5 Results

In many applications, satellite return links are used to transmit short packets of data of

200 bits or less. An optimised Turbo code of length 400 bits has been used to evaluate

the performance improvement of the hybrid decoder. The Turbo code that been used

has been optimised in respect to the multiplicity and minimum Hamming distance of
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the weight spectrum which is 16. The code features memory 4 recursive encoders and

has a code matched interleaver. Fig. 6.1 shows the performance of the Hybrid decoder

in comparison to the MAP decoder and to the sphere packing bound [13]. The Hybrid

decoder has an advantage of 0.45dB compared to the standard MAP decoder and is

0.3dB only, from the best achievable performance for (400,200) codes, as represented by

the sphere packing bound.

6.6 Conclusions

It has been shown that a hybrid MAP and ORLD decoder can provide improved per-

formance for short Turbo codes. With the likelihood of a second generation DVB-RCS

standard being considered soon, the hybrid decoder is a promising candidate for fur-

ther evaluation. Future work will consider a range of codes, code rates and higher order

modulation formats using this decoder for next generation DVB-RCS.
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7 Conclusion

The methods developed in this work have helped in developing new Turbo codes and good

interleavers. The results show that the interleaver optimisation program considerably

improves the performance of the code. Calculation of the MLA can be used as a guide

to the performance of the Turbo codes in the region of the error floor, thus saving time

simulating each code. A particularly poor design can be rejected based upon its MLA and

weight spectrum, without lengthy simulations. Many codes could be produced and short-

listed using the MLA calculation to select the best of a set of codes. It is only necessary to

simulate the selected codes, thus saving much time. Decoder convergence problems have

also been identified, when these problems are investigated it will be possible to modify the

interleaver design programs taking into account the decoders convergence performance.

The addition of a CRC outer code has shown that significant improvements are pos-

sible. The CRC does not necessarily increase the dmin of the code but does lead to a

reduction in the multiplicities of the first few non-zero terms of the weight spectrum. It

was previously shown in Section 4.2.2 that reduction of the multiplicities improves code

performance without necessarily increasing the dmin. Not only does the CRC help the

decoder it also provides a mechanism for reducing the multiplicities beyond that possible

with interleaver modification alone.

Issues of MAP decoder stability and convergence were successfully improved through

the addition of the Ordered Reliability Decoder which decodes the turbo code as a block

code. The combination of both decoding schemes proved to have the best performance.

Results presented in Section 6.5 are a testimony to the overall combined decoding capa-

bility.
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7.1 Major Findings

The major contributions this work has made to the field of turbo codes are in the weight

spectrum analysis, interleaver design, code design and decoding methods.

7.1.1 New Weight Spectrum Analysis Technique

In Chapter 4 a new weight spectrum analysis method was developed to allow faster

evaluation of weight spectra. This meant that new codes could be evaluated much more

quickly than by previous methods.

7.1.2 Improved Interleaver Designs

A new interleaver design method was presented in Section 3.1 to work with tailbiting

codes. Subsequent improvements where made to the interleaver design firstly by random-

swapping and secondly by weight spectrum optimisation.

7.1.3 Improved Code Design

The addition of the CRC outer code, described in Chapter 5, gave significant perfor-

mance improvement. Not only was the codes performance improved by reduction of the

multiplicities in the weight spectrum but also the CRC provides a stopping criteria for

the iterative turbo MAP decoder.

7.1.4 Improved Decoding Performance

In addition to the performance obtained from the use of the CRC outer code, further

decoder performance was obtained by the development of a hybrid decoding technique

introduced in Chapter 6.
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7.1.5 Emerging Standards Relating to This Work

Combined CRC and turbo codes are being developed for Digital Video Broadcast (DVB)[29]

and 3G and 4G LTE mobile phone standards[30].

7.2 Further or Future work

Throughout the period of this study there has been plenty of branches that could have

been explored further. One area that is of particular interest is the possibility of fixing

bits in the turbo-MAP decoder so that they cannot alternate, the ORLD can be employed

to select with bits to fix. An observation made from the CRC outer coding is that the

CRC introduces in most cases extra bits into the input of the turbo encoder. This leads

to increased codeword weight in many cases. Can the CRC or some other form of outer

code be applied that can lead to an even greater increase in codeword weight?
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A Computer Programs for the
Evaluation of Shannon Limit Curves

A.1 Shannon’s Sphere Packing Bound Limit

Shannon’s limit gives the theoretical limit of the codes performance at a given signal to

noise ratio (SNR). A computer program has been written to calculate this limit for a

range of SNR values. The program implements many of the equations in[55]. Shannon

showed that an optimum code needs to be received with a minimum SNR in order to

acheive a given probability of error[13], this is commonly known as Shannon’s limit since

it is not possible to produce a code with a performance better than it.

A.2 Degradation to Shannon Limit due to

Modulation

When a code is constrained to a digital modulation scheme there is a degradation to

the Shannon limit. The degradation is a function of the number of levels used in the

modulation and the code rate. For BPSK and a code rate of 2
3
the Shannon limit is

degraded by 0.49dB. A program was written to calculate the degradation for any given

code rate and number of modulation levels.
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B Derivation of the Union Bound

p(x) =
1√
2πσ2

e
−x2

2σ2 (B.1)

M =
1√
π

∫ ∞

d

e
−x2
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dx√
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Let z = x√
2σ2

and
√
2σ2 dz = dx

M =
1√
π
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An approximation to frame error rate for a coded signal can be calculated from the

first N terms of the weight spectrum

FER =

dmin+N
∑

d=dmin

1

2
Md erfc

(

√

S

No

)

(B.6)

where No is the noise energy and S is the signal energy defined as

S =
d2eR

4
(B.7)

where de is the Euclidean distance and R the rate.

M-PAM uses M different amplitudes to represent M different symbols. Adjacent

signal amplitudes are seprated by a distance of 2d[3, pp 169–171][4, pp 98–100].
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Am = (2m− 1−M)d,m = 1, 2, . . . ,M (B.8)

2-PAM has a constellation of A1 = −d and A2 = d. The average energy per symbol

is given by

Es = Eb =
(−d)2 + d2

2
(B.9)

= d2 (B.10)

The symbols are separated by 2d and the minimum Euclidean distance squared is

calculated as

d2e = dmin(2d)
2 (B.11)

= dmin4d
2 (B.12)

= dmin4Eb (B.13)
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4-PAM has a constellation of −3d, −d, d and 3d. The average energy per symbol is

given by

Es = 2Eb =
(−3d)2 + (−d)2 + d2 + (3d)2

4
(B.19)

=
9d2 + d2 + d2 + 9d2

4
(B.20)

= 5d2 (B.21)

A sequence of three non-zero symbols is 01, 10, 11 and has a hamming weight of four.

For the worst case the symbols are separated by 2d and the worst case minimum Euclidean

distance squared is calculated as

d2e = dmin

3

4
(2d)2 (B.22)

= dmin

3

4
4d2 (B.23)

= dmin 3d
2 (B.24)

= dmin3
2Eb

5
(B.25)

= dmin

6

5
Eb (B.26)
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Abstract — A method is presented where a paral-
lel concatenated convolutional code is preceded with
a short cyclic redundancy check (CRC) without code
rate loss. Parity bits are punctured and their place
taken by the CRC. The positions of the punctured
parity bits are optimised with reference to the weight
spectrum of the overall code in order to produce an
overall improvement in code performance. Results
are given for the weight spectrum of an optimised
code, rate 2

3
, codeword length, n=1014 in compari-

son with an optimised, non-CRC code using the same
rate and codeword length. Frame error rate perfor-
mance achieved is within 0.36dB of the Sphere Pack-
ing Bound constrained for binary transmission.

I. Introduction

There are several advantages in using a CRC or an outer
BCH code[1, 2, 3] in conjunction with a Turbo code[4], itera-
tively decoded. It provides a useful stopping criterion for the
decoder in conjunction with any other stopping criteria and
also strengthens codeword verification. It is shown below that
a CRC may be used without associated code rate loss and
without loss in performance by optimised puncturing of some
of the parity bits. Only high weight codewords are punctured
so that the dmin of the code is not changed. The weight spec-
trum of the code is evaluated and checked after introduction of
the CRC and the punctured parity bits. Surprisingly, a short
CRC of a few bits duration produces a dramatic improvement
due to a substantial thinning of the weight spectrum. The
approach used is to evaluate the weight spectrum of the punc-
tured code in conjunction with optimisation of the interleaver
design so that the weight spectrum is better than the original
code. A fast algorithm for evaluation of the weight spectrum
of a Turbo code with CRC and arbitrary parity bit punctur-
ing is described as well as simulation results of the optimised
code.

II. Encoder Structure

The encoder shown in Figure 1 consists of an inner code and
an outer code. The outer code is the CRC and the inner code is
a PCCC Turbo code. When all k information bits have entered
the encoder the CRC remainder is then input into the Turbo
encoder. To maintain the code rate it is necessary to puncture
m parity bits to make room for the CRC remainder. It is also
necessary to puncture a further m

`

1
R
− 1
´

bits to make room
for the parity bits associated with the CRC remainder. A
total of m

R
parity bits are punctured in order to maintain a

code rate that is equivalent to the non-CRC code.

III. Weight Spectrum Analysis

Although some methods have been given for weight spectrum
analysis for Turbo codes in the literature[5, 6], these do not

π

RSC1

RSC2

CRC

matrix
Puncturing

Figure 1: The CRC is shown as an outer code. The parity

output from the RSCs is punctured.

cover the case for a Turbo code with CRC as well as arbi-
trary parity bit puncturing. A fast algorithm has been devel-
oped which is based on factoring the overall codeword weight
into partitions which may be computed separately. Firstly the
maximum codeword weight required from the weight spectrum
analysis is defined, dmax. This in turn defines the maximum
parity bit weight of interest, wp(target), since the information
weight is given by the number of information bits in each code-
word. All possible information sequences are generated up
to a maximum user defined information weight using a tree
search associated with the trellis of RSC1 shown in Figure
1. The sequences are then interleaved and the corresponding
parity output sequences are evaluated and punctured. Se-
quences that produce a parity sequence weight more than
wp(target)

2
are discarded. Only sequences with parity weight

less than or equal to
wp(target)

2
are further processed by ob-

taining the RSC2 parity sequence weight. The procedure is
repeated starting with RSC2 retaining output sequences with
a parity sequence weight less than or equal to

wp(target)

2
. The

corresponding RSC1 parity sequences are then evaluated by
inverse interleaving the information sequences input to RSC2
and supplying them to RSC1. Sequences that have a total
codeword weight less than or equal to dmax are recorded in
the weight spectrum. The algorithm is as follows:

1. Generate next information sequence with required par-
ity weight using tree search of RSC1 trellis, if there are
no more sequences go to 7

2. Calculate CRC and append to information sequence

3. Re-input to RSC1, evaluate parity sequence weight after
puncturing

4. Interleave information plus CRC sequence, input to
RSC2, evaluate parity sequence weight after punctur-
ing

5. Record total weights for each codeword generated



6. Go to 1

7. Generate next information sequence with required par-
ity weight using tree search of RSC2 trellis

8. Inverse interleave information sequence input to RSC2

9. Calculate CRC and append to information sequence

10. Calculate RSC1 parity weight after puncturing

11. Interleave sequence and calculate RSC2 parity weight
after puncturing

12. Record total weights for each codeword generated

13. If there are more sequences go to 7

14. Evaluate the weight spectrum from all retained code-
words

IV. Weight Spectrum of Non-CRC and CRC
Turbo Codes

The probability of the decoder making an error in decoding a
codeword transmitted over a channel with AWGN is bounded
by the classic equation, Equation (1), where md is the number
of codewords with a Hamming weight of d.

Pe ≈
1

2

dmax
X

d=dmin

md erfc

 

r

Eb

No

d
k

n

!

(1)

A full weight spectrum consists of values for md where d =
dmin, dmin +1, . . . , dmax. When a full spectrum is available it
is possible to upper bound and lower bound Pe using Equa-
tion (1) by change the range of d.

In order to decrease the probability of decoder error it is
necessary to decrease the multiplicities, particularly for the
first term, in the weight spectrum. A procedure for improv-
ing the weight spectrum beyond that produced by the CRC is
based upon interleaver optimisation and is presented in Sec-
tion VII.

Weight Multiplicity Info. Weight

11 7 29

12 132 393

13 282 1011

Table 1: Partial weight spectrum of a k = 676, rate = 2

3

code.

Weight Multiplicity Info. Weight

11 5 11

12 13 39

13 9 26

Table 2: Partial weight spectrum of a k = 676, rate = 2

3

code, 6 parity bits punctured, 4 bit CRC.

Table 1 is the first few terms of the weight spectrum for a
k=676, rate 2

3
code without the benefit of a CRC. Table 2 is

the weight spectrum for a similar code using a CRC of length
4 bits.

The CRC used has a degree four primitive polynomial of
238 and has sixteen possible states. We can therefore expect

that for a large fraction of codewords 15
16

will result in a non-
zero CRC remainder producing high codeword weight after
Turbo encoding. The effect of this is that fifteen out of sixteen
codewords would benefit from an increase in weight due to the
contribution of the CRC remainder bits and can be removed
from the weight spectrum in Table 1. This spectral thinning
effect is visible when Table 2 is compared to Table 1.

V. Maximum Likelihood Asymptote (MLA)

The MLA shown in Figure 2 is calculated from the weight
spectrum of Table 1. Using Equation (1) for Eb

No
= 2.5dB

with the weight spectrum shown in Table 2:

Pe ≈
1

2

13
X

d=11

md erfc

 

r

1.778 · d ·
676

1014

!

=
1

2

ˆ

1.6366 × 10−6 + 1.2484 × 10−6 + 2.5433 × 10−7˜

= 1.5697 × 10−6

This value, along with other values, is plotted in the graph of
Figure 2. The MLA gives an approximation to the error floor
for Eb

No
> 2.8dB. Figure 2 for the simulation results can be

seen to approach the plotted MLA. The MLA may be used to
estimate the performance of this code and the performance of
any new code before lengthy simulations are carried out. Since
the simulation results can take several weeks to compute, the
MLA saves much time allowing an earlier indication of the
codes performance. With the weight spectrum available the
MLA may be calculated immediately.

VI. Simulation Results

Figure 2 shows the simulation results for the CRC and non-
CRC codes. When a low frame error rate is required the CRC
code has better performance than the non-CRC code. This
can be seen at the lower frame error rates in Figure 2. The
CRC code has a lower error floor confirming the predictions
from the MLA and weight spectrum analysis.
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Shannon r=2/3 k=676
Shannon 2PAM

Figure 2: Simulation of a k = 676, rate = 2

3
code. Com-

paring non-CRC code with CRC code.

The results from the simulation show the performance of
the CRC code to be within 0.36dB from Shannon’s Sphere
Packing Bound limit [7, 8] constrained for binary transmis-
sion. As the MLA is a union bound (upper bound) code per-
formance can be better as shown by the CRC curve in Figure
2.



VII. Weight spectrum improvement through
optimisation of interleaver

The weight spectrum is heavily dependent upon the se-
lection of a suitable interleaver. As the weight spectrum is
evaluated the interleaver may be modified to improve the min-
imum distance, dmin, to a target value, dmin(target). For all
codewords that have a distance less than the required target,
dmin(target), a modification is made to the interleaver. Each
of these codewords may be represented by a vector of indices
to the non-zero information bits in each codeword. The cor-
responding elements of the interleaver are swapped with their
neighbour (to maintain a reasonable S value), starting with
the first information index then taking each index in turn until
the codeword weight is raised to dmin(target) or higher. Sev-
eral iterations of weight spectrum evaluation and interleaver
modification are necessary as each modification made has an
effect on other codewords.

VIII. Conclusion

The results of many code designs of different lengths and
code rates, together with the introduction of the CRC, with
parity bit puncturing and interleaver optimisation show that
the CRC code has a significant performance gain particularly
in the region of the error floor compared to the non-CRC code.
This improvement is evident in the weight spectrum as well
as the simulation results.
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I. ABSTRACT

Interactive satellite terminals allow satellite links using
Variable Coding and Modulation (VCM), as featured in the
DVB-S2 standard, to achieve high levels of bandwidth and
power efficiency. One of the limitations of efficiency is the
coding/modulation used for the return links relies upon an
iterative decoder. A new type of decoder suitable for next
generation DVB-RCS systems is presented. It is based upon
an ordered reliability decoder in conjunction with a Turbo
code/ MAP decoder. The decoder algorithm is described and
analysed and some results are presented. For the example
code cited, it is demonstrated that the hybrid decoder gives
an improvement of 0.45dB compared to the standard Turbo
MAP decoder currently specified in the DVB-RCS standard
and is about 0.3dB from the sphere packing bound.

II. INTRODUCTION

The DVB-S2 broadcasting standard [1] allows for a
transmission mode in which Variable Coding and Modulation
(VCM) and Adaptive Coding and Modulation (ACM) can
be employed, whereby time division multiplexed datagrams
can use different modulation and coding formats so that
the average data throughput can be maximised to classes
of receiving terminals with different G

T
performances [2].

Significant improvements in data throughput can be realised
particularly when a return channel is available[3]. The satellite
return channel standard DVB-RCS standard[4]was finalised
in 2004 before the DVB-S2 standard and it is highly likely in
the near future that a second generation DVB-RCS standard
will be considered that will feature VCM. The DVB-RCS
standard features parallel concatenated Turbo codes and
iterative decoding and was originally proposed by Berrou
et al[5]. Improvements to these original codes, using higher
memory for the constituent recursive encoders have been
proposed by Berrou at al [6], [7]. The use of higher memory
tends to improve the minimum Hamming distance of the
Turbo code at the expense of iterative decoder convergence.

It has been noted by several researchers that the iterative
decoder limits the performance achievable for Turbo codes[8],
[9]. It has been observed in many cases where the Turbo MAP
decoder fails to converge, that usually only a few bits remain in

error[10]. In this paper it is proposed that Ordered Reliability
List Decoding is used to correct the remaining bits in error.
Analysis is provided of the decoder algorithm and results for
an example code which show the effectiveness of the decoder.

III. AN ALGORITHM FOR A HYBRID ORDERED

RELIABILITY LIST DECODER / TURBO MAP DECODER

In the proposed scheme an Ordered Reliability List Decoder
(ORLD) is provided with extrinsic probability outputs plus
the channel values after each MAP decoding cycle in the
Turbo decoder. The ORLD takes as input the A Posteriori
Probabilities (APP) from the output of the MAP decoder. In
many cases the MAP decoder can converge to just a few
bits in error in about four iterations. It has been observed
that in many cases, when the Turbo MAP decoder fails, that
further iterations are unable to alter the output because the
extrinsic information saturates or shows evidence of unstable
exchanges of extrinsic information between the constituent
decoders. The ORLD is able to break this cycle by forcing the
constituent decoders’ output to best match possible transmitted
codewords.

After each Turbo MAP decoder iteration the output APP’s
are supplied to the ORLD which then firstly them in terms
of their reliability, and then generates a list of candidate
codewords. Each candidate codeword is correlated with the
received vector which is denoted as R. The modulation is
assumed to be BPSK or QPSK. After demodulation the values
of the received vector are ±1 with added noise (AWGN).
Note that the candidate codewords are not correlated with the
extrinsic information from the Turbo MAP decoder since these
may have become saturated during the Turbo MAP decoding.
Also note that the Turbo MAP decoder is not constrained
to produce a codeword, this being a feature of convergence
failure[10]. However, the ORLD has the advantage that it
always produces codewords.

A. Detailed Operation of the Ordered Reliability List Decoder

In the standard manner first proposed by Dorsch [11], the
received vector, R, is first ordered according to the reliability
of each bit. From the received vector n− k erasures are made
to the least reliable bits. The erased bits are then solved using
a Gaussian elimination process applied to the parity check



matrix, H, of the Turbo code. It is relatively simple to obtain
the parity check matrix of the Turbo code from the parity
check matrices of the component codes[12]. It is sometimes
not possible to solve for a few of the erased bits, in this case
the bits are un-erased and the next bits erased. The Gaussian
elimination process is then continued until there are n − k

erasures that can be solved. The process ensures that all of
the erased bits are solved, least reliable first.

It is sometimes the case that errors occur in the k un-erased
bits, in this case the solved codeword will not correspond to the
transmitted codeword. Many of the solved bits will be in error
as they are derived from the erroneous bit. This situation can
easily be detected since the derived codeword will have a large
Euclidean distance from the received vector due to the many
solved bits being incorrect. A standard solution to this problem
is to systematically guess bit values in the un-erased bit
positions. A fast incremental,correlation approach is proposed
below, so that the likely error positions are eliminated first.
The decoding procedure stops when the codeword, Sbest(x), is
produced which gives the lowest Euclidean distance from the
received vector or the highest cross-correlation, see Section IV.
This codeword is either not in error or is an MRL error.(A
codeword closer to the received vector than the transmitted
codeword, so that a maximum likelihood decoder would also
fail to decode correctly this received vector). Whilst the ORLD
is not limited by convergence problems, it is limited in practi-
cal applications by the computational complexity involved in
guessing more than a fews bits in error.
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Fig. 1. Performance of a (400,200), 1

2
rate, Turbo code comparing the

iterative MAP decoder with the hybrid MAP-ORLD decoder.

IV. CROSS-CORRELATION OF CODEWORDS TO

DETERMINE THE MOST LIKELY CODEWORD

The MAP log-likelihood outputs, A, are permuted by an
ordering a such that

|Aa0
| ≥ |Aa1

| ≥ · · · ≥ |Aan−1| (1)

Π is a permutation vector defined as Πj = aij

where i0, i1, . . . , ik−1 are the smallest index values from

{0, 1, . . . , n − 1} such that

rank
[

gΠ0
gΠ1

· · · gΠk−1

]

= k (2)

where gi is the ith column in the generator matrix, G. The
remaining elements of Π are derived from the remaining
indexes such that

|AΠi
| ≥ |AΠi

| ≥ · · · ≥ |AΠi
| i = 0, 1, . . . , k − 1 (3)

|AΠi
| ≥ |AΠi

| ≥ · · · ≥ |AΠi
| i = k, k + 1, . . . , n − 1 (4)

The received vector, R, is permuted using the same permuta-
tion. The k most reliable bits of the permuted received vector,
S, are defined as

Si =
1 − sign(RΠi

)

2
i = 0, 1, . . . , k − 1 (5)

Note that S takes on values of 0 or 1 and is de-mapped from
the BPSK levels of ±1. The columns of the G matrix can also
be permuted to give G′.

G′

i,j = Gi,Πj
i = 0, 1, . . . , k − 1 j = 0, 1, . . . , n − 1 (6)

An initial permuted codeword is produced from S and G′.

C = S · G′ (7)

Correlation of the initial codeword is given by

X =
n−1
∑

i=0

(1 − 2Ci)RΠi
(8)

=

k−1
∑

i=0

|RΠi
| +

n−1
∑

i=k

(1 − 2Ci)RΠi
(9)

Later the correlation partial products will be used, these are
represented by the vector, V

Vi = (1 − 2Ci)RΠi
i = 0, 1, . . . , n − 1 (10)

Modification codewords are generated from the ‘G’ matrix of
the code

M = Q · G′ mod 2 (11)

Mj =

k−1
∑

i=0

Qi · G
′

i,j mod 2 j = 0, 1, . . . , n − 1(12)

Since there are only a few non-zero bits in Q it is more
efficient to select corresponding rows from the ‘G’ matrix.
A record of the guessed bits is kept in a list, f .

Mj =

p−1
∑

q=0

Gfq ,j mod 2 j = 0, 1, . . . , n − 1 (13)

The correlation of the new codeword is given by

Y =

n−1
∑

j=0

Vj (1 − 2Mj) (14)

=

n−1
∑

j=0

Vj − 2

n−1
∑

j=0

VjMj (15)

= X − 2

n−1
∑

j=0

VjMj (16)



Typically there are only about n−k
2

positions in M that are
non-zero, thus the term of the right of Equation(16) involves
few calculations. The evaluation of modified codewords only
requires summation of the few non-zero elements of this
term:

∑n−1

j=0
VjMj . The best codeword has the largest negative

value for
∑n−1

j=0
VjMj and with this approach the most likely

candidate codeword can be quickly determined. Moreover the
procedure lends itself to a fast, parallel implementation of the
decoder.

V. RESULTS

In many applications, satellite return links are used to
transmit short packets of data of 200 bits or less. An optimised
Turbo code of length 400 bits has been used to evaluate the
performance improvement of the hybrid decoder. The Turbo
code that been used has been optimised in respect to the
multiplicity and minimum Hamming distance of the weight
spectrum which is 16. The code features memory 4 recursive
encoders and has a code matched interleaver. Fig. 1 shows the
performance of the Hybrid decoder in comparison to the MAP
decoder and to the sphere packing bound [13]. The Hybrid
decoder has an advantage of 0.45dB compared to the standard
MAP decoder and is 0.3dB only, from the best achievable
performance for (400,200) codes, as represented by the sphere
packing bound.

VI. CONCLUSIONS

It has been shown that a hybrid MAP and ORLD decoder
can provide improved performance for short Turbo codes.
With the likelihood of a second generation DVB-RCS standard
being considered soon, the hybrid decoder is a promising
candidate for further evaluation. Future work will consider a
range of codes, code rates and higher order modulation formats
using this decoder for next generation DVB-RCS.
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