6 research outputs found

    On problems without polynomial kernels (Extended abstract).

    Get PDF
    Abstract. Kernelization is a central technique used in parameterized algorithms, and in other techniques for coping with NP-hard problems. In this paper, we introduce a new method which allows us to show that many problems do not have polynomial size kernels under reasonable complexity-theoretic assumptions. These problems include kPath, k-Cycle, k-Exact Cycle, k-Short Cheap Tour, k-Graph Minor Order Test, k-Cutwidth, k-Search Number, k-Pathwidth, k-Treewidth, k-Branchwidth, and several optimization problems parameterized by treewidth or cliquewidth

    Kernels for Feedback Arc Set In Tournaments

    Get PDF
    A tournament T=(V,A) is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on n vertices and an integer parameter k, the Feedback Arc Set problem asks whether the given digraph has a set of k arcs whose removal results in an acyclic digraph. The Feedback Arc Set problem restricted to tournaments is known as the k-Feedback Arc Set in Tournaments (k-FAST) problem. In this paper we obtain a linear vertex kernel for k-FAST. That is, we give a polynomial time algorithm which given an input instance T to k-FAST obtains an equivalent instance T' on O(k) vertices. In fact, given any fixed e>0, the kernelized instance has at most (2+e)k vertices. Our result improves the previous known bound of O(k^2) on the kernel size for k-FAST. Our kernelization algorithm solves the problem on a subclass of tournaments in polynomial time and uses a known polynomial time approximation scheme for k-FAST

    Explicit linear kernels via dynamic programming

    Get PDF
    Several algorithmic meta-theorems on kernelization have appeared in the last years, starting with the result of Bodlaender et al. [FOCS 2009] on graphs of bounded genus, then generalized by Fomin et al. [SODA 2010] to graphs excluding a fixed minor, and by Kim et al. [ICALP 2013] to graphs excluding a fixed topological minor. Typically, these results guarantee the existence of linear or polynomial kernels on sparse graph classes for problems satisfying some generic conditions but, mainly due to their generality, it is not clear how to derive from them constructive kernels with explicit constants. In this paper we make a step toward a fully constructive meta-kernelization theory on sparse graphs. Our approach is based on a more explicit protrusion replacement machinery that, instead of expressibility in CMSO logic, uses dynamic programming, which allows us to find an explicit upper bound on the size of the derived kernels. We demonstrate the usefulness of our techniques by providing the first explicit linear kernels for rr-Dominating Set and rr-Scattered Set on apex-minor-free graphs, and for Planar-\mathcal{F}-Deletion on graphs excluding a fixed (topological) minor in the case where all the graphs in \mathcal{F} are connected.Comment: 32 page

    The Parameterized Complexity of Degree Constrained Editing Problems

    Get PDF
    This thesis examines degree constrained editing problems within the framework of parameterized complexity. A degree constrained editing problem takes as input a graph and a set of constraints and asks whether the graph can be altered in at most k editing steps such that the degrees of the remaining vertices are within the given constraints. Parameterized complexity gives a framework for examining problems that are traditionally considered intractable and developing efficient exact algorithms for them, or showing that it is unlikely that they have such algorithms, by introducing an additional component to the input, the parameter, which gives additional information about the structure of the problem. If the problem has an algorithm that is exponential in the parameter, but polynomial, with constant degree, in the size of the input, then it is considered to be fixed-parameter tractable. Parameterized complexity also provides an intractability framework for identifying problems that are likely to not have such an algorithm. Degree constrained editing problems provide natural parameterizations in terms of the total cost k of vertex deletions, edge deletions and edge additions allowed, and the upper bound r on the degree of the vertices remaining after editing. We define a class of degree constrained editing problems, WDCE, which generalises several well know problems, such as Degree r Deletion, Cubic Subgraph, r-Regular Subgraph, f-Factor and General Factor. We show that in general if both k and r are part of the parameter, problems in the WDCE class are fixed-parameter tractable, and if parameterized by k or r alone, the problems are intractable in a parameterized sense. We further show cases of WDCE that have polynomial time kernelizations, and in particular when all the degree constraints are a single number and the editing operations include vertex deletion and edge deletion we show that there is a kernel with at most O(kr(k + r)) vertices. If we allow vertex deletion and edge addition, we show that despite remaining fixed-parameter tractable when parameterized by k and r together, the problems are unlikely to have polynomial sized kernelizations, or polynomial time kernelizations of a certain form, under certain complexity theoretic assumptions. We also examine a more general case where given an input graph the question is whether with at most k deletions the graph can be made r-degenerate. We show that in this case the problems are intractable, even when r is a constant
    corecore