20,080 research outputs found

    On problems without polynomial kernels (Extended abstract).

    Get PDF
    Abstract. Kernelization is a central technique used in parameterized algorithms, and in other techniques for coping with NP-hard problems. In this paper, we introduce a new method which allows us to show that many problems do not have polynomial size kernels under reasonable complexity-theoretic assumptions. These problems include kPath, k-Cycle, k-Exact Cycle, k-Short Cheap Tour, k-Graph Minor Order Test, k-Cutwidth, k-Search Number, k-Pathwidth, k-Treewidth, k-Branchwidth, and several optimization problems parameterized by treewidth or cliquewidth

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page

    FPT is Characterized by Useful Obstruction Sets

    Full text link
    Many graph problems were first shown to be fixed-parameter tractable using the results of Robertson and Seymour on graph minors. We show that the combination of finite, computable, obstruction sets and efficient order tests is not just one way of obtaining strongly uniform FPT algorithms, but that all of FPT may be captured in this way. Our new characterization of FPT has a strong connection to the theory of kernelization, as we prove that problems with polynomial kernels can be characterized by obstruction sets whose elements have polynomial size. Consequently we investigate the interplay between the sizes of problem kernels and the sizes of the elements of such obstruction sets, obtaining several examples of how results in one area yield new insights in the other. We show how exponential-size minor-minimal obstructions for pathwidth k form the crucial ingredient in a novel OR-cross-composition for k-Pathwidth, complementing the trivial AND-composition that is known for this problem. In the other direction, we show that OR-cross-compositions into a parameterized problem can be used to rule out the existence of efficiently generated quasi-orders on its instances that characterize the NO-instances by polynomial-size obstructions.Comment: Extended abstract with appendix, as accepted to WG 201

    On Sparsification for Computing Treewidth

    Full text link
    We investigate whether an n-vertex instance (G,k) of Treewidth, asking whether the graph G has treewidth at most k, can efficiently be made sparse without changing its answer. By giving a special form of OR-cross-composition, we prove that this is unlikely: if there is an e > 0 and a polynomial-time algorithm that reduces n-vertex Treewidth instances to equivalent instances, of an arbitrary problem, with O(n^{2-e}) bits, then NP is in coNP/poly and the polynomial hierarchy collapses to its third level. Our sparsification lower bound has implications for structural parameterizations of Treewidth: parameterizations by measures that do not exceed the vertex count, cannot have kernels with O(k^{2-e}) bits for any e > 0, unless NP is in coNP/poly. Motivated by the question of determining the optimal kernel size for Treewidth parameterized by vertex cover, we improve the O(k^3)-vertex kernel from Bodlaender et al. (STACS 2011) to a kernel with O(k^2) vertices. Our improved kernel is based on a novel form of treewidth-invariant set. We use the q-expansion lemma of Fomin et al. (STACS 2011) to find such sets efficiently in graphs whose vertex count is superquadratic in their vertex cover number.Comment: 21 pages. Full version of the extended abstract presented at IPEC 201

    A structural approach to kernels for ILPs: Treewidth and Total Unimodularity

    Get PDF
    Kernelization is a theoretical formalization of efficient preprocessing for NP-hard problems. Empirically, preprocessing is highly successful in practice, for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this, previous work studied the existence of kernelizations for ILP related problems, e.g., for testing feasibility of Ax <= b. In contrast to the observed success of CPLEX, however, the results were largely negative. Intuitively, practical instances have far more useful structure than the worst-case instances used to prove these lower bounds. In the present paper, we study the effect that subsystems with (Gaifman graph of) bounded treewidth or totally unimodularity have on the kernelizability of the ILP feasibility problem. We show that, on the positive side, if these subsystems have a small number of variables on which they interact with the remaining instance, then we can efficiently replace them by smaller subsystems of size polynomial in the domain without changing feasibility. Thus, if large parts of an instance consist of such subsystems, then this yields a substantial size reduction. We complement this by proving that relaxations to the considered structures, e.g., larger boundaries of the subsystems, allow worst-case lower bounds against kernelization. Thus, these relaxed structures can be used to build instance families that cannot be efficiently reduced, by any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium on Algorithms (ESA 2015
    corecore