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Abstract. Kernelization is a central technique used in parameterized
algorithms, and in other techniques for coping with NP-hard problems.
In this paper, we introduce a new method which allows us to show
that many problems do not have polynomial size kernels under rea-
sonable complexity-theoretic assumptions. These problems include k-
Path, k-Cycle, k-Exact Cycle, k-Short Cheap Tour, k-Graph
Minor Order Test, k-Cutwidth, k-Search Number, k-Pathwidth,
k-Treewidth, k-Branchwidth, and several optimization problems pa-
rameterized by treewidth or cliquewidth.

1 Introduction

Parameterized complexity extends classical complexity theory in a way that
allows a refined categorization of tractable and intractable computational prob-
lems. This is done by a two-dimensional analysis of problems instances – one
dimension used as usual for measuring the input-length, and the other used
for measuring other structural-properties of the input, e.g. its witness size. A
problem is considered tractable, if there is an algorithm solving it with any
super-polynomial running-time confined strictly to the parameter. As an exam-
ple, consider the k-Vertex Cover problem: Given a graph G and a parameter
k ∈ N, determine whether G has a vertex cover of size k. When viewed classically,
this problem is NP-complete. However, its parameterized variant can be solved
in O(2kn) time [11] (see [22] for improvements), which is practical for instances
with small parameter values, and in general is far better than the O(nk+1) run-
ning time of the brute-force algorithm. More generally, a problem is said to be
fixed-parameter tractable if it has an algorithm running in time f(k)p(n) (FPT-
time), where f is any computable function solely in the parameter k, and p(n)
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is a polynomial in the total input length n [11]. The class of all fixed-parameter
tractable problems is denoted by FPT. The first class of fixed-parameter in-
tractable problems is W[1], and it is known that if FPT = W[1] then n variable
3-SAT can be solved in 2o(n) time [10].

A fundamental and very powerful technique in designing FPT algorithms
is kernelization. In a nutshell, a kernelization algorithm for a parameterized
problem is a polynomial-time transformation that transforms any given instance
to an equivalent instance of the same problem, with size and parameter bounded
by a function of the parameter in the input. Typically this is done using so-called
reduction rules, which allow the safe reduction of the instance to an equivalent
“smaller” instance. In this sense, kernelization can be viewed as polynomial-
time preprocessing which has universal applicability, not only in the design of
efficient FPT algorithms, but also in the design of approximation and heuristic
algorithms [21].

It is clear that any (decidable) language which has a kernelization algorithm
is in FPT. Somewhat more surprising, but still very simple to show, is that all
problems in FPT have kernelization algorithms [9]. This is seen by considering
the two cases f(k) ≥ n and f(k) < n separately, where f(k) is the parameter-
dependent time-bound of the algorithm solving the given problem. Since every
FPT problem has a kernelization algorithm, it is interesting to study problems
that are kernelizable in a stricter sense - for example, problems which allow
kernelization algorithms that reduce instances to a size which is polynomially
bounded by the parameter. Such problems are said to have a polynomial kernel-
ization algorithm, or a polynomial kernel. For instance, the kernelization algo-
rithm of Buss discussed above is a polynomial kernel, and so k-Vertex Cover
has a polynomial kernel. Other problems known to have polynomial kernels in-
clude k-Leaf Spanning Tree [6], k-Feedback Vertex Set [5, 8], k-Planar
Dominating Set [1], k-Cluster Editing [20], k-Hitting Set for Sets of
Bounded Size [27], and many more.

On the other hand, there are also several problems for which no polynomial
kernel has yet been found. These clearly include all problems known to be W[1]-
hard, as the existence of a kernel for such a problem would imply W[1] = FPT.
So we focus on parameterized problems known to be in FPT. A great number of
such problems, are problems shown to be in FPT using heavy machinery such as
color-coding [2], the graph minor technique [13], or tree-decomposition dynamic
programming [3]. In many cases, the algorithms given by these frameworks are
impractical in practice. For instance, consider the k-Path problem: Given a
graph G and a parameter k ∈ N, determine whether G has a simple path of
length k.

This problem can be solved in O(2O(k)n2 lg n) time using the color-coding
technique of Alon, Yuster, and Zwick [2]. This time complexity might seem
similar to the complexity of the algorithm for k-Vertex Cover mentioned
above, however the hidden constant in the O(k) exponent is quite large, ruling-
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out any possibility for practical usefulness1. Nevertheless, an efficient polynomial
kernel could be a promising path in making this algorithm practical. Does k-
Path have a polynomial kernel? k-Minor Order Test and k-Treewidth are
other good examples, as both serve as highly time-consuming subroutines in most
algorithms deploying the graph minor technique or tree-decomposition dynamic
programming. Do k-Minor Order Test and k-Treewidth have polynomial
kernels?

In this paper, we introduce a new method which allows us to show that many
problems do not have polynomial kernels under reasonable complexity-theoretic
assumptions. We believe that this material is significant and will have wide
applications. For instance, learning of our material, three other teams of authors,
namely Fortnow and Santhanam, Chen et al., and Buhrman have applied the
concepts in this paper to other arenas.

Questions such as these are the motivating starting point of this paper.
Clearly, if P = NP then all parameterized problems based on NP-complete prob-
lems have constant size kernels. Thus, any method we generate to show that a
problem is unlikely to have a polynomial kernel will entail a complexity-theoretic
hypothesis. For developing such a hypotheses, we introduce the notion of a distil-
lation algorithm. Intuitively speaking, a distillation algorithm for a given problem
functions like a Boolean OR gate of problem-instances – it receives as input a
sequence of instances, and outputs yes-instance iff at least one of the instances
in the sequence is also a yes-instance. The algorithm is allowed to run in time
polynomial in the total length of the sequence, but must output an instance
whose size is polynomially bounded by the size of the maximum-size instance
in its input sequence. We remark that independently and somewhat earlier, a
similar notion had been formulated by Harnik and Naor [23] as an example in
relation to compression-related cryptographic problems. Or paper, as well as the
subsequent papers mentioned above, show that the notion of distillation is of
central importance in complexity considerations.

We study the possibility of the existence of distillation algorithms for NP-
complete problems, and conjecture that this is highly implausible. It is clear that
if any NP-complete problem has a distillation algorithm, then they all do. This
seems very unlikely. Intuitively, large amounts of information cannot be coalesced
into a single small instance. This notion seems rather similar to the notion of
P-selectivity which collapses the polynomial hierarchy [25]. It turns out that this
intuition can be realized to also relate the existence of distillation algorithms for
NP-complete problems to a similar collapse. After correspondence about this
issue, Fortnow and Santhanam verified a conjecture of ours proving that the
existence a of distillation algorithm for any NP-complete problem would imply
the collapse of the polynomial hierarchy to the third level [18]. This allows us to

1 It was brought to our attention that there are recent improvements to the k-Path
algorithm mentioned above which have rather practical running-times [24, 26]. Both
these algorithms employ variants of the color-coding technique, however, these vari-
ants are not known to be as general as the original technique. In any case, the reader
should mostly consider the k-Path problem as a case-study example.
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prove, via a carefully defined parametric-analog of distillation, the unlikelihood
of polynomial kernels for FPT problems such as k-Path, k-Minor Order Test
and others. In particular, our study gives rise to the following theorem.

Theorem 1. Unless all NP-complete problems have distillation algorithms,
none of the following FPT problems have polynomial kernels: k-Path, k-Cycle,
k-Exact Cycle, k-Short Cheap Tour, k-Graph Minor Order Test,
k-Bounded Treewidth Subgraph Test, k-Planar Graph Subgraph
Test, k-Planar Graph Induced Subgraph Test, w-Independent Set,
w-Clique, and w-Dominating Set.

Here, w-Independent Set, w-Clique, and w-Dominating Set denote the
classical Independent Set, Clique, and Dominating Set problems param-
eterized by the treewidth of their given graphs. These are given as mere exam-
ples. Many other graph-theoretic problems parameterized by the treewidth of
the graph could have been used in the theorem.

We next turn to study distillation of coNP-complete problems. Although we
are unable to relate the existence of distillation algorithms for coNP-complete
problems to any known complexity conjecture, we can still show that polynomial
kernels for some important FPT problems not captured by Theorem 1, imply
distillation algorithms for coNP-complete problems.

Theorem 2. Unless all coNP-complete problems have distillation algorithms,
none of the following FPT problems have polynomial kernels: k-Cutwidth, k-
Modified Cutwidth, k-Search Number, k-Pathwidth, k-Treewidth, k-
Branchwidth, k-Gate Matrix Layout, k-Front Size, w-3-Coloring and
w-3-Domatic Number.

We remark that in unpublished work, Buhrman [7] has shown that there are
oracles relative to which no coNP-complete problem has a distillation algorithm.
We believe that the same information-theoretical intuition applies here, and that
no coNP-complete problem can have a distillation algorithm.

In the full version of this paper, we also study sub-exponential kernels, i.e
kernelization algorithms that reduce instances to a size which is sub-exponentially
bounded by the parameter. In particular, we prove that there are problems
solvable in O(2kn) time which (unconditionally) do not have any sub-exponential
kernel of size 2o(k). This relates our material to the work of Flum, Grohe, and
Weyer [17] who introduced the notion of “bounded fixed-parameter tractability”
ass an attempt to provide a theory for feasible FPT algorithms. They argued
that for an FPT algorithm to be useful in practice, it should most likely have a
running time of 2O(k)nO(1) or perhaps 2kO(1)

nO(1). We show that the notion of
small kernel and small running-time are quite different.

2 Preliminaries

Throughout the paper, we let Σ denote a finite alphabet, and N the set of natural
numbers. A (classical) problem L is a subset of Σ∗, where Σ∗ is the set of all
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finite length strings over Σ. In natural cases, the strings in L will be an encoding
of some combinatorial object, e.g. graphs. We will call strings x ∈ Σ∗ which are
proper encodings, input of L, regardless of whether x ∈ L. We will often not
distinguish between a combinatorial object and its string encoding, using for
example G to denote both a graph and a string in Σ∗.

A parameterized problem is a subset L ⊆ Σ∗×N. In this way, an input (x, k)
to a parameterized language consists of two parts, where the second part k is
the parameter. A parameterized problem L is fixed-parameter tractable if there
exists an algorithm which on a given (x, k) ∈ Σ∗×N, decides whether (x, k) ∈ L
in f(k)p(n) time, where f is an arbitrary computable function solely in k, and
p is a polynomial in the total input length (including the unary encoding of
the parameter) n = |x|+ k. Such an algorithm is said to run in FPT-time, and
FPT is the class of all parameterized problems that can be solved by an FPT-
time algorithm (i.e. all problems which are fixed-parameter tractable). For more
background on parameterized complexity, the reader is referred to [5, 11, 16].

To relate notions from parameterized complexity and notions from classic
complexity theory with each other, we use a natural way of mapping parame-
terized problems to classical problems. The mapping of parameterized problems
is done by mapping (x, k) to the string x#1k, where # /∈ Σ denotes the blank
letter and 1 is an arbitrary letter in Σ. In this way, the unparameterized version
of a parameterized problem L is the langauge L̃ = {x#1k | (x, k) ∈ L}. We next
give a formal definition for the central notion of this paper:

Definition 1 (Kernelization). A kernelization algorithm, or in short, a ker-
nel for a parameterized problem L ⊆ Σ∗ × N is an algorithm that given
(x, k) ∈ Σ∗ × N, outputs in p(|x|+ k) time a pair (x′, k′) ∈ Σ∗ × N such that

– (x, k) ∈ L ⇔ (x′, k′) ∈ L,
– |x′|, k′ ≤ f(k),

where f is an arbitrary computable function, and p a polynomial. Any function
f as above is referred to as the size of the kernel.

That is, if we have a kernel for L, then for any (x, k) ∈ Σ ×N, we can obtain in
polynomial time an equivalent instance with respect to L whose size is bounded
by a function of the parameter. If the size of the kernel is polynomial, we say
that the parameterized langauge L has a polynomial kernel.

There is also a more general definition for kernelization than the one given
above which sometimes appears in practice. This definition allows a kernelization
algorithm for a parameterized problem L to map an instance of L to an instance
of another problem L′. We remark that all results in this paper easily follow for
most cases of the more general definition. Nevertheless, we will present these
results with Definition 1 for the sake of clarity and simplicity.

3 A Generic Lower-Bounds Engine

In the following we develop the main engine for proving Theorems 1 and 2.
This engine evolves around the notion of distillation algorithms for NP-complete
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problems. We first introduce this notion, and then carefully define a parametric-
analog of a distillation algorithm which we call a composition algorithm. Follow-
ing this, we show that if a compositional parameterized problem has a polynomial
kernel, then its unparameterized counterpart has a distillation algorithm.

Definition 2 (Distillation). A distillation algorithm for a classical problem
L ⊆ Σ∗ is an algorithm that receives as input a sequence (x1, . . . , xt), with
xi ∈ Σ∗ for each 1 ≤ i ≤ t, uses time polynomial in

∑t
i=1 |xi|, and outputs a

string y ∈ Σ∗ with

1. y ∈ L ⇐⇒ xi ∈ L for some 1 ≤ i ≤ t.
2. |y| is polynomial in max1≤i≤t |xi|.

That is, given a sequence of t instances of L, a distillation algorithm gives
an output that is equivalent to the sequence of instances, in the sense that a
collection with at least one yes-instance (i.e. instance belonging to L) is mapped
to a yes-instance, and a collection with only no-instances is mapped to a no-
instance. (In a certain sense, this functions like a Boolean OR operator.) The
algorithm is allowed to use polynomial-time in the total size of all instances.
The crux is that its output must be bounded by a polynomial in the size of the
largest of the instances from the sequence, rather than in the total length of
the instances in the sequence. We next introduce the notion of a composition
algorithm for parameterized problems. In some sense, one can view a composition
algorithm as the parametric-analog of a distillation algorithm.

Definition 3 (Composition). A composition algorithm for a parameterized
problem L ⊆ Σ∗ × N is an algorithm that receives as input a sequence
((x1, k), . . . , (xt, k)), with (xi, k) ∈ Σ∗ × N+ for each 1 ≤ i ≤ t, uses time
polynomial in

∑t
i=1 |xi|+ k, and outputs (y, k′) ∈ Σ∗ × N+ with

1. (y, k′) ∈ L ⇐⇒ (xi, k) ∈ L for some 1 ≤ i ≤ t.
2. k′ is polynomial in k.

Hence, given a sequence of instances for L, a composition-algorithm outputs
an equivalent instance to this sequence in same sense of a distillation algorithm,
except that now the parameter of the instance is required to be polynomially-
bounded by parameter appearing in all instances of the sequence, rather than
the size of the instance bounded by the maximum size of of all instances.

We call classical problems with distillation algorithms distillable problems,
and parameterized problems with composition algorithms compositional prob-
lems. Despite the similarities between the two definitions, as we shall soon see,
the existence of composition algorithms for some parameterized problems is
much more plausible than the existence of distillations for their unparameterized
counterparts. Nevertheless, there is still a deep connection between distillation
and composition, obtained via polynomial kernelization. In particular, in the
following lemma we prove that combining a composition algorithm for a pa-
rameterized problem L, with a polynomial kernel for it, admits a distillation
algorithm for the unparameterized counterpart of L.
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Lemma 1. Let L be a compositional parameterized problem whose unparame-
terized version L̃ is NP-complete. If L has a polynomial kernel, then L̃ is also
distillable.

Proof. Let x̃1, . . . , x̃t ∈ Σ∗ be instances of L̃, and let (xi, ki) ∈ Σ∗ × N+ denote
the instance of L derived from x̃i, for all 1 ≤ i ≤ t. Since L̃ is NP-complete,
there exist two polynomial-time transformations Φ : L̃ → SAT and Ψ : SAT →
L̃, where SAT is the problem of deciding whether a given boolean formula is
satisfiable. We use the composition and polynomial kernelization algorithms of
L, along with Φ and Ψ , to obtain a distillation algorithm for L̃. The distillation
algorithm proceeds in three steps.

Set k = max1≤i≤t ki. In the first step, we take the subsequence in
((x1, k1), . . . , (xt, kt)) of instances whose parameter equals `, for each 1 ≤ ` ≤ k.
We apply the composition algorithm on each one of these subsequence separately,
and obtain a new sequence ((y1, k

′
1), . . . , (yr, k

′
r)), where (yi, k

′
i), 1 ≤ i ≤ r, is

the instance obtained by composing all instances with parameters equaling the
i’th parameter value in {k1, . . . , kt}. In the second step, we apply the polynomial
kernel on each instance of the sequence ((y1, k

′
1), . . . , (yr, k

′
r)), to obtain a new

sequence ((z1, k
′′
1 ), . . . , (zr, k

′′
r )), with (zi, k

′′
i ) the instance obtained from (yi, k

′
i),

for each 1 ≤ i ≤ r. Finally, in the last step, we transform each z̃i, the unpa-
rameterized instance of L̃ derived from (zi, k

′′
i ), to a Boolean formula Φ(z̃i). We

output the instance of L̃ for which Ψ maps the disjunction of these formulas to,
i.e. Ψ(

∨
1≤i≤r Φ(z̃i)).

We argue that this algorithm distills the sequence (x̃1, . . . , x̃t) in polynomial
time, and therefore is a distillation algorithm for L̃. First, by the correctness
of the composition and kernelization algorithms of L, and by the correctness of
Φ and Ψ , it is not difficult to verify that Ψ(

∨
1≤i≤r Φ(z̃i)) ∈ L̃ ⇐⇒ x̃i ∈ L̃

for some i, 1 ≤ i ≤ t. Furthermore, the total running-time of our algorithm is
polynomial in

∑t
i=1 |x̃i|. To complete the proof, we show that the final output

returned by our algorithm is polynomially bounded in n = max1≤i≤t |x̃i|. The
first observation is that since each x̃i is derived from the instance (xi, ki), 1 ≤
i ≤ t, we have r ≤ k = max1≤i≤t ki ≤ max1≤i≤t |x̃i| = n. Therefore, there
are at most n instances in the sequence ((y1, k

′
1), . . . , (yr, k

′
r)) obtained in the

first step of the algorithm. Furthermore, as each (yi, k
′
i), 1 ≤ i ≤ r, is obtained

via composition, we know that k′i is bounded by some polynomial in ` ≤ k ≤ n.
Hence, since for each 1 ≤ i ≤ r, the instance (zi, k

′′
i ) is the output of a polynomial

kernelization on (yi, k
′
i), we also know that (zi, k

′′
i ) and z̃i have size polynomially-

bounded in n. It follows that
∑r

i=1 |z̃i| is polynomial in n, and since both Φ and
Ψ are polynomial-time, so is Ψ(

∨
1≤i≤r Φ(z̃i)). ut

We conclude this section by stating a lemma proven by by Fortnow and
Santhanam [18], which verifies our initial intuition that NP-complete problems
are unlikely to have distillation algorithms. It is clear from Definition 2, that if
any NP-complete problem were distillable, then they all would be – we can use
the polynomial-time reductions provided for any NP-complete problem L̃ to and
from our presumed distillable NP-complete problem to distill L̃. Fortnow and
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Santhanam proved that a distillation algorithm for any NP-complete problem
would imply coNP ⊆ NP/poly, which on its turn implies that the polynomial
hierarchy collapses to at most three levels [30], a hierarchy generally believed to
be proper.

Lemma 2 ([18]). If any NP-complete problem has a distillation algorithm then
coNP ⊆ NP/poly.

4 Applications

Lemmas 1 and 2 which together form our lower bound engine together imply that
any compositional parameterized problem whose unparameterized counterpart
is NP-complete cannot have a polynomial kernel, unless the polynomial hier-
archy collapses. In the following we exemplify the strength of our lower bound
engine by giving several examples of compositional FPT problems that are based
on unparameterized classical NP-complete problems. We focus only on natural
examples, and in particular, we complete the proof of Theorem 1.

Let us call a parameterized problem L ⊆ Σ∗ × N a parameterized graph
problem, if for any (x, k) ∈ L, x is an encoding of a graph.

Lemma 3. Let L be a parameterized graph problem such that for any pair of
graphs G1 and G2, and any integer k ∈ N, we have (G1, k) ∈ L ∨ (G2, k) ∈
L ⇐⇒ (G1 ∪ G2, k) ∈ L, where G1 ∪ G2 is the disjoint union of G1 and G2.
Then L is compositional.

As an immediate corollary of the simple lemma above, we get that our case-
study problem k-Path is compositional, and thus is unlikely to have a polyno-
mial kernel. Indeed, the disjoint union of two graphs has a k-path iff one of the
graphs has a k-path. Two other similar examples are the k-Cycle and k-Exact
Cycle problems, which respectively ask to determine whether a given graph has
a (not necessarily induced) subgraph which is isomorphic to a cycle with at least
k vertices and a cycle with exactly k vertices. Both these problems are also in
FPT by the color-coding technique of Alon et al. [2], and are compositional by
the lemma above. Another example is k-Short Cheap Tour, which given an
edge-weighted graph, asks whether there is a tour of length at least k in the
graph with total weight not more than some given threshold. This problem is in
FPT due to [28], and is again compositional according to Lemma 3.

In fact, Lemma 3 implies that any parameterized problem which asks to de-
termine whether a specific graph H (e.g. a k-clique) is a “subgraph of some
kind” of an input graph G, for almost any natural notion of subgraph, is compo-
sitional when parameterized by H (or more precisely, by the numeric encoding
of H, the position of H in some canonical ordering of simple graphs). For ex-
ample, consider the k-Minor Order Test problem, famously in FPT due to
Robertson and Seymour’s celebrated Graph Minor Theorem. This problem asks
to decide whether a given graph H is a minor of another given graph G, and
the parameter k is H. Clearly, if we slightly relax the problem and require H to
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be connected, the disjoint union construction of Lemma 3 above gives a compo-
sition algorithm for this problem. If H is not connected, we can connect it by
adding a new global vertex adjacent to all other vertices in H, and then add such
a global vertex to each Gi, 1 ≤ i ≤ t. By similar arguments we can also show
that k-Bounded Treewidth Subgraph Test – the problem of determining
whether a given bounded treewidth graph occurs as a subgraph in another given
graph (in FPT again via color-coding [2]) – is also compositional. Other two
good examples are k-Planar Graph Subgraph Test and k-Planar Graph
Induced Subgraph Test, both in FPT due to [12].

We now turn to proving the last item of Theorem 1. In particular, we show
that many natural NP-complete problems parameterized by treewidth are un-
likely to have a polynomial kernel. We illustrate the technique with one example,
and then state the general result that can be obtained using the same way. Con-
sider the w-Independent Set problem: Given a graph G, a tree-decomposition
T of G of width w ∈ N+, and an integer k ∈ N+, determine whether G has an
independent set of size k. Note that the parameter here is w and not k. We call
the unparameterized variant of w-Independent Set the Independent Set
with Treewidth problem. Clearly, Independent Set with Treewidth is
NP-complete by the straightforward reduction from Independent Set which
appends a trivial tree-decomposition to the given instance of Independent Set.

To show that w-Independent Set is compositional, we will work with a
‘guarantee’ version, the w-Independent Set Refinement problem: given a
graph G, a tree-decomposition T of G, and an independent set I in G, determine
whether G has an independent set of size |I| + 1. The parameter is the width
w of T . The unparameterized variant of w-Independent Set Refinement
is Independent Set Refinement with Treewidth. It is easy to see that
this problem is NP-complete by the following reduction from Independent
Set with Treewidth – Given an instance (G, T , k), construct the instance
(G′, T ′, I), where G′ is the graph obtained by adding k − 1 new pairwise non-
adjacent vertices I to G which are connected to all the old vertices, and T ′ is
the tree-decomposition obtained by adding I to each node in T .

Lemma 4. w-Independent Set Refinement is compositional, and fur-
thermore, if w-Independent Set has a polynomial kernel then so does w-
Independent Set Refinement.

The proof of the lemma above (which we omit due to space constraints)
implies that to fit a natural NP-complete graph problem parameterized by
treewidth into the context of our lower-bound framework, one has to basically
show two things: First, that the refinement variant of the problem is composi-
tional, and second, that the unparameterized version of the refinement variant is
NP-complete. In fact, this technique is not necessarily limited to treewidth, but
can be used with almost any other structural parameter such as cliquewidth,
max. degree, min. vertex-cover, and so forth. To complete the proof of The-
orem 1, what is left to prove is that Dominating Set Refinement with
Treewidth is NP-complete; Clique Refinement with Treewidth can be
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seen to be NP-complete by a similar construction shown above. We omit the
details.

5 Extensions

We next extend the framework presented in the previous section so that it cap-
tures other important FPT problems not captured by Theorem 1. In particular,
we discuss the proof for Theorem 2. The main observation we use for the former
is that an AND-variant of a composition algorithm for a parameterized problem
L, yields a composition algorithm for L, the complement of L. This observation
is useful since a lot of problems have natural AND-compositions rather than
regular compositions. As any FPT problem has a polynomial kernel iff its com-
plement also has one, showing that a coFPT problem is compositional is just as
good for our purposes as showing that its complement in FPT is compositional.

Lemma 5. Let L be a parameterized graph problem such that for any pair of
graphs G1 and G2, and any integer k ∈ N, we have (G1, k) ∈ L ∧ (G2, k) ∈
L ⇐⇒ (G1 ∪ G2, k) ∈ L, where G1 ∪ G2 is the disjoint union of G1 and G2.
Then L, the complement of L, is compositional.

There are many FPT problem with a natural composition as above. These
include the classical “width problems” k-Pathwidth, k-Treewidth, and k-
Branchwidth (see [4] for formal definitions and FPT algorithms for these
problems). Three closely related relatives of these problems are k-Search Num-
ber [14], k-Front Size [4], and k-Gate Matrix Layout [15], which all have
AND-composition by the lemma above. Lemma 5 also implies that two other
famous FPT “width problems” are AND-compositional, namely, k-Cutwidth
and k-Modified Cutwidth [14].

We prove the last item of Theorem 2 by using refinement variants as done
for the treewidth parameterized problems in Theorem 1. In this context, it is
worth mentioning that partitioning problems seem more adaptable to AND-
compositions, as opposed to subset problems which are better suited for regular
composition. Recall that w-3-Chromatic Number is the problem of determin-
ing, given a graph G and a tree-decomposition T of G, whether there exists a
partitioning (or coloring) Π of V (G) into three classes, where each class induces
an independent set in G. The parameter is the width of T . The w-3-Domatic
Number problem is defined similarly, except that here the goal is to partition
(or domatic-color) V (G), again into three classes, with each class inducing a
dominating set of G. Indeed, we selected w-3-Chromatic Number and w-
3-Domatic Number for Theorem 2 as they are two of the more well-known
graph partitioning problems. Many other natural partitioning problems could
have been selected as well.

The refinement variants of these two problems, w-3-Chromatic Number
Refinement and w-3-Domatic Number Refinement, are defined by adding
to the input an appropriate vertex-partitioning Π (with respect to the problem
definition), of cardinality four for w-3-Chromatic Number Refinement and
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two for w-3-Domatic Number Refinement. It is easy to see that the unpa-
rameterized versions of these two problems are NP-complete by recalling that
one can color planar graphs with four colors in polynomial-time (see e.g. [29]),
while it is NP-complete to decide whether a planar graph is 3-colorable, and
by recalling that every graph without an isolated vertex can be domatic-colored
with two colors in polynomial-time (see e.g. [19]). Furthermore, it is easy to
see that the standard disjoint union algorithm is an AND-composition for these
two problems. Thus, by similar arguments used in Section 4, we can conclude
that a polynomial-kernel for either w-3-Chromatic Number or w-3-Domatic
Number implies that all coNP-complete problems are distillable.
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