93 research outputs found

    Beampattern Design in Non-Uniform MIMO Communication

    Full text link
    In recent years and with introduction of 5G cellular network and communication, researchers have shown great interest in Multiple Input Multiple Output (MIMO) communication, an advanced technology. Many studies have examined the problem of designing the beampattern for MIMO communication using uniform arrays and the covariance-based method to concentrate the transmitted power to the users. However, this paper aims to tackle this issue in the context of non-uniform arrays. Previous authors have primarily focused on designing the transmitted beampattern based on the cross-correlation matrix of transmitted signal elements. In contrast, this paper suggests optimizing the positions of transmitted antennas along with the cross-correlation matrix. This approach is expected to produce better results

    Properties of the MIMO radar ambiguity function

    Get PDF
    MIMO (multiple-input multiple-output) radar is an emerging technology which has drawn considerable attention. Unlike the traditional SIMO (single-input multiple-output) radar, which transmits scaled versions of a single waveform in the antenna elements, the MIMO radar transmits independent waveforms in each of the antenna elements. It has been shown that MIMO radar systems have many advantages such as high spatial resolution, improved parameter identifiability, and enhanced flexibility for transmit beampattern design. In the traditional SIMO radar, the range and Doppler resolutions can be characterized by the radar ambiguity function. It is a major tool for studying and analyzing radar signals. Recently, the ambiguity function has been extended to the MIMO radar case. In this paper, some mathematical properties of the MIMO radar ambiguity function are derived. These properties provide insights into the MIMO radar waveform design

    Hybrid Beamforming With Sub-arrayed MIMO Radar: Enabling Joint Sensing and Communication at mmWave Band

    Get PDF
    In this paper, we propose a beamforming design for dual-functional radar-communication (DFRC) systems at the millimeter wave (mmWave) band, where hybrid beamforming and sub-arrayed MIMO radar techniques are jointly exploited. We assume that a base station (BS) is serving a user equipment (UE) located in a Non-Line-of-Sight (NLoS) channel, which in the meantime actively detects multiple targets located in a Line-of-Sight (LoS) channel. Given the optimal communication beamformer and the desired radar beampattern, we propose to design the analog and digital beamformers under non-convex constant-modulus (CM) and power constraints, such that the weighted summation of the communication and radar beamforming errors is minimized. The formulated optimization problem can be decomposed into three subproblems, and is solved by the alternating minimization approach. Numerical simulations verify the feasibility of the proposed beamforming design, and show that our approach offers a favorable performance tradeoff between sensing and communication.Comment: 5 pages, 2 figures, submitted to ICASSP 201

    Fast Implementation of Transmit Beamforming for Colocated MIMO Radar

    Get PDF
    Multiple-input Multiple-output (MIMO) radars benefit from spatial and waveform diversities to improve the performance potential. Phased array radars transmit scaled versions of a single waveform thereby limiting the transmit degrees of freedom to one. However MIMO radars transmit diverse waveforms from different transmit array elements thereby increasing the degrees of freedom to form flexible transmit beampatterns. The transmit beampattern of a colocated MIMO radar depends on the zero-lag correlation matrix of different transmit waveforms. Many solutions have been developed for designing the signal correlation matrix to achieve a desired transmit beampattern based on optimization algorithms in the literature. In this paper, a fast algorithm for designing the correlation matrix of the transmit waveforms is developed that allows the next generation radars to form flexible beampatterns in real-time. An efficient method for sidelobe control with negligible increase in mainlobe width is also presented

    Robust Design of Transmit Waveform and Receive Filter For Colocated MIMO Radar

    Full text link
    We consider the problem of angle-robust joint transmit waveform and receive filter design for colocated Multiple-Input Multiple-Output (MIMO) radar, in the presence of signal-dependent interferences. The design problem is cast as a max-min optimization problem to maximize the worst-case output signal-to-interference-plus-noise-ratio (SINR) with respect to the unknown angle of the target of interest. Based on rank-one relaxation and semi-definite programming (SDP) representation of a nonnegative trigonometric polynomial, a cyclic optimization algorithm is proposed to tackle this problem. The effectiveness of the proposed method is illustrated via numerical examples.Comment: 6 pages, 13 figures, part of this work was submitted to IEEE Signal Processing Letters; (short introduction; typos corrected; revised statement in section III-B and IV; revised figure labels
    • …
    corecore