9,201 research outputs found

    Flexible and Robust Privacy-Preserving Implicit Authentication

    Full text link
    Implicit authentication consists of a server authenticating a user based on the user's usage profile, instead of/in addition to relying on something the user explicitly knows (passwords, private keys, etc.). While implicit authentication makes identity theft by third parties more difficult, it requires the server to learn and store the user's usage profile. Recently, the first privacy-preserving implicit authentication system was presented, in which the server does not learn the user's profile. It uses an ad hoc two-party computation protocol to compare the user's fresh sampled features against an encrypted stored user's profile. The protocol requires storing the usage profile and comparing against it using two different cryptosystems, one of them order-preserving; furthermore, features must be numerical. We present here a simpler protocol based on set intersection that has the advantages of: i) requiring only one cryptosystem; ii) not leaking the relative order of fresh feature samples; iii) being able to deal with any type of features (numerical or non-numerical). Keywords: Privacy-preserving implicit authentication, privacy-preserving set intersection, implicit authentication, active authentication, transparent authentication, risk mitigation, data brokers.Comment: IFIP SEC 2015-Intl. Information Security and Privacy Conference, May 26-28, 2015, IFIP AICT, Springer, to appea

    Privacy-Preserving Genetic Relatedness Test

    Get PDF
    An increasing number of individuals are turning to Direct-To-Consumer (DTC) genetic testing to learn about their predisposition to diseases, traits, and/or ancestry. DTC companies like 23andme and Ancestry.com have started to offer popular and affordable ancestry and genealogy tests, with services allowing users to find unknown relatives and long-distant cousins. Naturally, access and possible dissemination of genetic data prompts serious privacy concerns, thus motivating the need to design efficient primitives supporting private genetic tests. In this paper, we present an effective protocol for privacy-preserving genetic relatedness test (PPGRT), enabling a cloud server to run relatedness tests on input an encrypted genetic database and a test facility's encrypted genetic sample. We reduce the test to a data matching problem and perform it, privately, using searchable encryption. Finally, a performance evaluation of hamming distance based PP-GRT attests to the practicality of our proposals.Comment: A preliminary version of this paper appears in the Proceedings of the 3rd International Workshop on Genome Privacy and Security (GenoPri'16

    k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data

    Full text link
    Data Mining has wide applications in many areas such as banking, medicine, scientific research and among government agencies. Classification is one of the commonly used tasks in data mining applications. For the past decade, due to the rise of various privacy issues, many theoretical and practical solutions to the classification problem have been proposed under different security models. However, with the recent popularity of cloud computing, users now have the opportunity to outsource their data, in encrypted form, as well as the data mining tasks to the cloud. Since the data on the cloud is in encrypted form, existing privacy preserving classification techniques are not applicable. In this paper, we focus on solving the classification problem over encrypted data. In particular, we propose a secure k-NN classifier over encrypted data in the cloud. The proposed k-NN protocol protects the confidentiality of the data, user's input query, and data access patterns. To the best of our knowledge, our work is the first to develop a secure k-NN classifier over encrypted data under the semi-honest model. Also, we empirically analyze the efficiency of our solution through various experiments.Comment: 29 pages, 2 figures, 3 tables arXiv admin note: substantial text overlap with arXiv:1307.482
    • …
    corecore