10 research outputs found

    Lower bounds on the performance of Analog to Digital Converters

    Get PDF
    This paper deals with the task of finding certified lower bounds for the performance of Analog to Digital Converters (ADCs). A general ADC is modeled as a causal, discrete-time dynamical system with outputs taking values in a finite set. We define the performance of an ADC as the worst-case average intensity of the filtered input matching error. The input matching error is the difference between the input and output of the ADC. This error signal is filtered using a shaping filter, the passband of which determines the frequency region of interest for minimizing the error. The problem of finding a lower bound for the performance of an ADC is formulated as a dynamic game problem in which the input signal to the ADC plays against the output of the ADC. Furthermore, the performance measure must be optimized in the presence of quantized disturbances (output of the ADC) that can exceed the control variable (input of the ADC) in magnitude. We characterize the optimal solution in terms of a Bellman-type inequality. A numerical approach is presented to compute the value function in parallel with the feedback law for generating the worst case input signal. The specific structure of the problem is used to prove certain properties of the value function that allow for iterative computation of a certified solution to the Bellman inequality. The solution provides a certified lower bound on the performance of any ADC with respect to the selected performance criteria.United States. Army Research Office. Efficient Linearized All-Silicon Transmitter IC

    On the Minimal Average Data-Rate that Guarantees a Given Closed Loop Performance Level

    Get PDF
    This paper deals with control system design subject to average data-rate constraints. By focusing on SISO LTI plants, and a class of source coding schemes, we establish lower and upper bounds on the minimal average data-rate needed to achieve a prescribed performance level. We also provide a specific source coding scheme, within the proposed class, that is guaranteed to achieve the desired performance level at average data-rates below our upper bound. Our results are based upon a recently proposed framework to address control problems subject to average data-rate constraints.

    Improved Upper Bounds to the Causal Quadratic Rate-Distortion Function for Gaussian Stationary Sources

    Get PDF
    We improve the existing achievable rate regions for causal and for zero-delay source coding of stationary Gaussian sources under an average mean squared error (MSE) distortion measure. To begin with, we find a closed-form expression for the information-theoretic causal rate-distortion function (RDF) under such distortion measure, denoted by Rcit(D)R_{c}^{it}(D), for first-order Gauss-Markov processes. Rc^{it}(D) is a lower bound to the optimal performance theoretically attainable (OPTA) by any causal source code, namely Rc^{op}(D). We show that, for Gaussian sources, the latter can also be upper bounded as Rc^{op}(D)\leq Rc^{it}(D) + 0.5 log_{2}(2\pi e) bits/sample. In order to analyze Rcit(D)R_{c}^{it}(D) for arbitrary zero-mean Gaussian stationary sources, we introduce \bar{Rc^{it}}(D), the information-theoretic causal RDF when the reconstruction error is jointly stationary with the source. Based upon \bar{Rc^{it}}(D), we derive three closed-form upper bounds to the additive rate loss defined as \bar{Rc^{it}}(D) - R(D), where R(D) denotes Shannon's RDF. Two of these bounds are strictly smaller than 0.5 bits/sample at all rates. These bounds differ from one another in their tightness and ease of evaluation; the tighter the bound, the more involved its evaluation. We then show that, for any source spectral density and any positive distortion D\leq \sigma_{x}^{2}, \bar{Rc^{it}}(D) can be realized by an AWGN channel surrounded by a unique set of causal pre-, post-, and feedback filters. We show that finding such filters constitutes a convex optimization problem. In order to solve the latter, we propose an iterative optimization procedure that yields the optimal filters and is guaranteed to converge to \bar{Rc^{it}}(D). Finally, by establishing a connection to feedback quantization we design a causal and a zero-delay coding scheme which, for Gaussian sources, achieves...Comment: 47 pages, revised version submitted to IEEE Trans. Information Theor

    DESIGN OF EMBEDDED FILTERS FOR INNER-LOOP POWER CONTROL IN WIRELESS CDMA COMMUNICATION SYSTEMS

    Get PDF
    ABSTRACT We study inner-loop power control for mobile wireless communication systems using code division multiple access transmission. We focus on the uplink, i.e., on communication from the mobile-to the base-station, and show how to minimise the variance of the signal-to-interference ratio (SIR) tracking error through incorporation of recursive filters. These filters complement existing power controllers and are designed by using a linear model which takes into account quantisation of the power control signal, dynamics of channel gains, interference from other users, target SIR, and SIR estimation errors. Simulation results indicate that significant performance gains can be obtained, even in situations where the models used for design are only an approximation

    Packetized Predictive Control of Stochastic Systems Over Bit-Rate Limited Channels With Packet Loss

    Full text link

    On optimal perfect reconstruction feedback quantizers

    No full text
    This paper presents novel results on perfect reconstruction feedback quantizers (PRFQs), i.e., noise-shaping, predictive and sigma-delta A/D converters whose signal transfer function is unity. Our analysis of this class of converters is based upon an additive white noise model of quantization errors. Our key result is a formula that relates the minimum achievable MSE of such converters to the signal-to-noise ratio (SNR) of the scalar quantizer embedded in the feedback loop. This result allows us to obtain analytical expressions that characterize the corresponding optimal filters. We also show that, for a fixed SNR of the scalar quantizer, the end-to-end MSE of an optimal PRFQ which uses the optimal filters (which for this case turn out to be IIR) decreases exponentially with increasing oversampling ratio. Key departures from earlier work include the fact that fed back quantization noise is explicitly taken into account and that the order of the converter filters is not a priori restricted
    corecore