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On the Minimal Average Data-Rate that

Guarantees a Given Closed Loop Performance Level

Eduardo I. Silva, Milan S. Derpich, and Jan Østergaard∗

July 7, 2010

Abstract

This paper deals with control system design subject to average data-rate constraints. By

focusing on SISO LTI plants, and a class of source coding schemes, we establish lower and upper

bounds on the minimal average data-rate needed to achieve a prescribed performance level. We

also provide a specific source coding scheme, within the proposed class, that is guaranteed to

achieve the desired performance level at average data-rates below our upper bound. Our results

are based upon a recently proposed framework to address control problems subject to average

data-rate constraints.

1 Introduction

The study of control systems subject to communication constraints has recently received much attention
in the control community (see, e.g., the papers in the special issue [1]). Within this framework, a
key question relates to the trade-offs between control objectives and communication constraints. This
paper focuses on the interplay between average data-rate constraints (in bits per sample) and stationary
performance in a class of networked control systems (NCSs).

When stability is the sole control objective, the results of [2] guarantee that, for a noisy LTI plant
model and subject to mild conditions on the noise sources statistics, it is possible to find causal coders,
decoders and controllers such that the resulting closed loop system is mean square stable, if and only
if the average data-rate is greater than the sum of the logarithm of the absolute value of the unstable
plant poles. This result establishes a fundamental separation line between what is achievable in NCSs
over digital channels and what is not, when the problem of interest is mean square stability (see also
the thorough discussion in the survey paper [3]).

When performance bounds subject to average data-rate constraints are sought, there are relatively
fewer results available. There exist lower bounds on the mean square norm of the plant state that
make explicit the fact that, as the average data-rate approaches the absolute minimum for stability,
the performance becomes arbitrarily poor when disturbances are present [2,3]. This holds irrespective
of how the coder, decoder and controller are chosen. Unfortunately, it is unclear whether or not these
bounds are tight in general [3].

∗E.I. Silva and M.S. Derpich are with the Departamento de Electrónica, Universidad Técnica Federico Santa Maŕıa,
Casilla 110-V, Valparáıso, Chile. J. Østergaard is with the Department of Electronic Systems, Aalborg University, Niels
Jernes Vej 12, DK-9220, Aalborg, Denmark. Emails: eduardo.silva@usm.cl, milan.derpich@usm.cl, jo@es.aau.dk
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A more general performance-oriented approach has been pursued in [3,4]. In those works, conditions
for separation and certainty equivalence have been investigated in the context of quadratic stochastic
problems for fully observed plants with data-rate constraints in the feedback path. If the encoder
has a specific recursive structure, then certainty equivalence and a quasi -separation principle hold [3].
This result is interesting, but [3] does not give a computable characterization of the optimal encoding
policies. A similar drawback is shared by the results reported in [4]. In that work, performance related
results are expressed in terms of the so-called sequential rate-distortion function, which is very difficult
to compute in general. For fully observed Gaussian first order autoregressive systems, [4] provides an
expression for the sequential rate-distortion function. However, it is not clear from the results in [4]
whether or not the sequential rate-distortion function is operationally tight (see Section IV-C in [4]).

Other works related to the performance of control systems subject to data-rate constraints are
reported in [5] and [6]. The first work focuses on noiseless state estimation subject to data-rate
constraints under three different criteria. The case most relevant to this work uses an asymptotic (in
time) quadratic criterion to measure the state reconstruction error. For such a measure, it is shown
in [5] that the bound established in [2] is sufficient to achieve any prescribed asymptotic distortion
level. This is achieved, however, at the expense of arbitrarily large estimation errors for any given
finite time. This feature of the solution makes the conclusions in [5] too optimistic. On the other
hand, [6] considers non-linear stochastic control problems over noisy channels, and a functional (i.e.,
not explicit) characterization of the optimal control policies is presented.

In this paper, we focus on SISO LTI plants. Our main contribution is a characterization of upper
and lower bounds on the minimal average data-rate that allows one to attain a given performance level
(as measured by the stationary variance of the plant output). To that end, we focus on a specific class
of source coding schemes that contains, as special cases, the coding schemes studied in [7, 8]. We also
provide a specific source coding scheme, within the proposed class, that is guaranteed to achieve the
desired performance level at average data-rates below our upper bound. Instrumental to our results
is the characterization of the minimal signal-to-noise ratio (SNR) that guarantees a prescribed closed
loop performance level in a related class of NCSs (cf. [9, 10]).

The remainder of this paper is organized as follows: Section 2 presents the problem of interest
in this paper, and defines the class of considered source coding schemes. Section 3 establishes, for
the class of source coding schemes introduced in Section 2, a relationship between average data-rates
and an internal SNR. Section 4 focuses on the interplay between SNR constraints and closed loop
performance. These results are then used in Section 5 to present our main contribution. Section 6
draws conclusions.

Notation: R denotes the set of real numbers, R+ denotes the set of strictly positive real numbers,
R+

0 � R+ ∪ {0}, N0 � {0, 1, · · · }; |x| stands for the magnitude (absolute value) of x. Rp is the set of
all proper and real rational SISO transfer functions, RH∞ contains all stable transfer functions in Rp,
RH2 contains all the strictly proper transfer functions in RH∞, and U∞ contains all the biproper and
minimum-phase transfer functions in RH∞. L1 and L2 are defined as usual, and the associated norms
are denoted by ||·||1 and ||·||2, respectively [11].
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Figure 1: Networked control system.

2 Setup and Problem Definition

2.1 The setup

This paper focuses on the NCS of Figure 1. In that figure, G is a SISO LTI plant, u is the control
input, y is the plant output, and d is an input disturbance. The feedback path in Figure 1 comprises
an error-free digital channel, and thus quantization becomes mandatory. This task is carried out by
an encoder whose output correspond to the binary words sc. These symbols are then mapped back
into real numbers by a decoder. It is clear that the encoder and decoder also embody a controller
for the plant. As will become clear as we proceed, a distinction between the controller task and the
encoder-decoder task is rather artificial in our setup.

We introduce the following assumptions on G and d:

Assumption 1 The plant G is SISO, LTI, strictly proper, free of unstable hidden modes, and has no

poles or zeros on the unit circle. The initial state of the plant xo, and the disturbance d, are such that

(xo, d) is jointly second order Gaussian; d is stationary and has spectral factor Ωd ∈ U∞. �

In this paper we focus on source coding schemes (i.e., encoder-decoder pairs) of the following type:

Definition 1 The source coding scheme of Figure 1 is said to be linear if and only if its input y and

output u are related via

u = Tqq + Tyy, (1)

where q is a second order zero-mean i.i.d. sequence, q is independent of (d, xo), and Tq, Ty ∈ Rp are

the transfer functions of LTI systems with deterministic initial states. �

The class of linear coding schemes extends the class of so-called independent and i.i.d. coding
schemes introduced in [7, 8]. We acknowledge that it is a restricted class of coding schemes. However,
its simplicity allows one to actually address control system design problems subject to average data-rate
constraints.

Any linear source coding scheme can be written as shown in Figure 2(a), where E and H̄ are
proper transfer functions. The design of E and H̄ is however non-trivial. Indeed, it is easy to see
that optimally designing E and H̄ amounts to solving an optimal control problem subject to sparsity
constraints [12]. To the best of our knowledge, the only known sufficient conditions (see [12]) that
allow one to pose such problems as convex ones are not satisfied in our case.

Motivated by the previous discussion, we introduce the alternative rewriting of a linear source
coding scheme shown in Figure 2(b), where H, E,C, F ∈ Rp are the transfer functions of filters with
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Figure 2: Two alternative representations of a linear source coding scheme.
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Figure 3: The NCS of Figure 1 when a linear source coding scheme is employed.

deterministic initial states. In the scheme of Figure 2(b), F is redundant. However, as will become
clear below, this over-parametrization of linear source coding schemes allows one to construct a convex
optimization problem that is equivalent to that of optimally designing H̄ and E in Figure 2(a).

When the linear source coding scheme of Figure 2(b) is used in the NCS of Figure 1, the feedback
system of Figure 3 arises. For future reference we define1

S �
�
(H, C, F, E) ∈ R4

p
: the loop of Figure 3 internally stable and well-posed

�
. (2)

Remark 1 In the remainder of this paper, when we refer to a linear source coding scheme, it must be

understood that we refer to the specific architecture of Figure 2(b), where q satisfies the conditions in

Definition 1. �

2.2 Average data-rate constraints

In this section we make a connection between the average data-rate across a linear source coding
scheme, and the stationary second order properties of the auxiliary signals w and v in Figure 2. In

1Internal stability and well-posedness are defined in the standard way (see, e.g., [13]).
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order to do so, we first make the relationship between those signals and the channel symbols sc in
Figure 1 explicit.

Without loss of generality, we assume that the link between v and w in Figure 2 is given by the
scheme of Figure 4 [14]. In that figure, E, D, H and H

−1 are causal systems such that2

s(k) = Ek(vk
, S

k

E), sc(k) = Hk

�
s

k
, S

k

H

�
,

ŝ(k) = H
−1
k

�
s

k

c
, S

k

H

�
, w(k) = Dk(ŝk

, S
k

D),
(3)

where Ek, Dk, Hk, H
−1
k

are (possibly nonlinear time-varying) deterministic mappings, and SE(k),
SD(k), SH(k) correspond to side information that becomes available at time instant k at the encoder
side, decoder side, and both at the encoder and decoder sides, respectively. The range of Ek is assumed
to be countable, and that of Hk, to be a countable set of prefix-free binary words [15]. The mappings
Hk and H

−1
k

are chosen so as to satisfy

H
−1
k

(H0(s(0), SH(0)), · · · , Hk(sk
, S

k

H), Sk

H) = s(k) (4)

for any s
k, S

k

H
, and any k ∈ N0. Condition (4) makes explicit the fact that the blocks H and H

−1

act as a transparent link between the output of E and the input of D in Figure 4. Since we assume an
error free digital channel, and (4) holds, it follows that ŝ = s.

It is clear that, when one uses the scheme of Figure 4 as the link between v and w in a linear source
coding scheme, one needs to focus on mappings Ek,Dk,Hk, H

−1
k

such that the process

q � w − v (5)

satisfies the conditions in Definition 1. We also note that, since ŝ = s, the feedback link between w and
the encoder side in Figure 2 does not require a physical channel. (To make w available at the encoder
side, it suffices to replicate D at the encoder side.)

We denote the expected length of the symbol sc(i) by R(i), and define the average data-rate across
the considered source coding scheme as

R � lim
k→∞

1
k

k−1�

i=0

R(i). (6)

We will work under the following assumptions:

Assumption 2
2Xk stands for X(0), · · · , X(k).
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(a) SD is independent of (xo, d).

(b) The mapping Di is such that, ∀i ∈ N0, there exists another deterministic mapping gi such that

ŝ
i = gi(wi

, S
i

D
) (i.e., D is invertible upon knowledge of SD). �

Assumption 2(a) is motivated by the sensible requirement that the block D in Figure 4 uses only
past and present symbols, and side information not related to the message being sent, to construct its
current output. On the other hand, if, for some mappings Ek and Dk, Assumption 2(b) does not hold,
then one can define another set of mappings that achieve a coding noise q with the same statistics as
in the original situation, but at the expense of a lower average data-rate R.3 Accordingly, if one aims
at minimizing R, then one can focus, without loss of optimality, on mappings Ek and Dk satisfying
Assumption 2(b).

2.3 Problem definition

The main focus of this paper is on the minimal average data-rate that allows one to attain a given
performance level, as measured by the stationary variance of the plant output y. With the definitions
introduced above, we are now in a position to formally define the problem of interest as follows:

Problem 1 Consider the NCS of Figure 1, suppose that Assumption 1 holds, that the source coding

scheme is linear, and that the scheme of Figure 4 is used as the link between v and w. Denote by Dinf

the minimum stationary variance of y that is achievable in the NCS of Figure 3 when q = 0. Find, for

a given performance level D ∈ (Dinf ,∞),

RD � inf
σ2

y≤D

R, (7)

where σ
2
y

is the stationary variance of y, and the optimization is carried out with respect to:

• All causal blocks E, D, H, H
−1 described by (3)-(4), such that the coding noise q (see (5)) is as

in Definition 1, and D satisfies Assumption 2(b).

• All side information processes SE, SD, SH satisfying Assumption 2(a).

• All filters (H, C, F, E) ∈ S (see (2)). �

Remark 2 The definition of independent source coding scheme guarantees that, provided (H, C, F, E) ∈
S and the auxiliary noise q satisfies the conditions in Definition 1, the NCS considered in Problem 1

is mean square stable. �

In order to solve Problem 1, we will first establish a lower bound on the average data-rate across a
linear source coding scheme in terms of stationary second order properties of the auxiliary signals w

and v (see Figure 4). The existence of this bound motivates Section 4, where we study the optimal
design of linear source coding schemes subject to SNR constraints. These results are then used in
Section 5 to give both upper and lower bounds on RD.

3The proof of this claim can be found in [8].
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3 Bounding the Average Data-Rate Across Linear Source Cod-

ing Schemes

This section extends the results of Section V-A in [8] to show that, when a linear source coding scheme
is used in the NCS of Figure 1, the minimum average data-rate across it (subject to a performance
constraint) is bounded from below by a simple function of the minimum ratio between the stationary
variances of v and q (subject to the same performance constraint). To do so, we start by noting that
the following holds:

Theorem 1 Consider the NCS of Figure 1 where the source coding scheme is linear, and the link

between v and w is given by the scheme of Figure 4. If (H, C, F, E) ∈ S and Assumptions 1 and 2

hold, then

R ≥ I∞(v → w) ≥
1
4π

�
π

−π

ln
Sw

σ2
q

dω, (8)

where I∞(v → w) denotes the directed mutual information rate [16, 17] between v and w, Sw is the

stationary power spectral density of w, and σ
2
q

is the variance of q. Moreover, equality holds in the last

inequality if and only if q is Gaussian.

Proof: The first inequality follows immediately from Theorem 1 in [8]. The second inequality
follows from Part 3 of Lemma 5.2 in [7], and from the proof of Theorem 3 in [8] (see also Theorem 4.6
in [17]). �

Theorem 1 gives a lower bound on the average data-rate across a linear source coding scheme in
terms of a simple function of the spectrum of w and the equivalent noise variance σ

2
q
. This key result,

upon which the remainder of this paper is based upon, can be further simplified. Note that Jensen’s
inequality yields

1
4π

�
π

−π

ln
Sw

σ2
q

dω ≤
1
2

ln (1 + γ), γ � σ
2
v

σ2
q

, (9)

where σ
2
v

is the stationary variance of v, and γ is the SNR of the linear source coding scheme. By
finding the minimal SNR γ subject to a performance constraint (e.g., an upper bound on the stationary
variance of the plant output y), one is also calculating an upper bound on the minimal value of the
right hand side of (8), subject to the same performance constraint. If, in addition, the optimal solution
to the former SNR minimization problem is such that the gap between the left and right hand sides of
the inequality in (9) is arbitrarily small (or can be made so without compromising optimality), then,
by virtue of Theorem 1, one would immediately get a lower bound on RD by solving the much simpler
SNR minimization problem. The following result guarantees that this is actually the case:

Lemma 1 Consider the NCS of Figure 1, where the source coding scheme is linear and has a fixed noise

source q. Suppose that Assumption 1 holds and define φ � 1
4π

R π

−π
ln

Sw
σ2

q
dω. If the choice (H, C, F, E) =

(H0, C0, F0, E0) ∈ S is such that σ
2
y

= σ
2
y,0 and φ = φ0, then, for any arbitrarily small η > 0, there exist

a choice of filters, (H,C, F, E) = (H1, C1, F1, E1) ∈ S such that σ
2
y

= σ
2
y,0 φ = φ0 and, in addition,

1
2 ln(1 +

σ2
v

σ2
q
)= φ0 + η.

Proof: The proof of this result goes along the lines of the proof of Theorem 4 in [8]. �
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4 Optimal Performance Subject to SNR Constraints

Motivated by the discussion preceding Lemma 1, we will now focus on the following problem:

Problem 2 Consider the NCS of Figure 1 where the source coding scheme is linear, and suppose that

Assumption 1 holds. Define γinf �`Qnp
i=1 |pi|2

´
−1, where pi is the i

th unstable pole of G. Find, for a

given Γ ∈ (γinf ,∞),
�
σ

2
y

�
Γ

� inf
(H,C,F,E)∈S,σ

2
q∈R+

γ≤Γ

σ
2
y
, (10)

where all the symbols are as defined before. �

Remark 3 It follows from Theorem 17 in [10] that γinf corresponds to the minimal SNR compatible

with mean square stability in the NCS of Figure 3. �

We note that Problem 2 is concerned with the best achievable performance, as measured by σ
2
y
,

that is achievable when an upper bound Γ is placed on the SNR γ. As shown in Lemma 4 below, this
problem is equivalent to the problem of finding the minimal achievable SNR γ subject to an upper
bound on σ

2
y
. Our momentary change of focus is only due to technical reasons (see Remark 4 below).

The next lemma states necessary conditions for the 4-tuple (H,C, F,E) to belong to S:

Lemma 2 Consider the NCS of Figure 1 where the source coding scheme is linear, and suppose that

Assumption 1 holds. Define

S � 1
1− C −HEG

, (11)

and consider a coprime factorization of G over RH∞, i.e., consider X, Y , N , D ∈ RH∞, with

X, D biproper, such that G = ND
−1 and XD − Y N = 1. If (H, C, F, E) ∈ S, then F ∈ RH2,

HSGE = NY −NDQ for some Q ∈ RH∞, and

1
2π

�
π

−π

ln |(1− F )S|dω ≥

np�

i=1

ln |pi|, (12)

where pi is the i
th unstable pole of G.

Proof: It is clear from Figure 3 that F is in open loop. Thus F must be stable to ensure the
internal stability of the loop. On the other hand, q models a possibly non-linear and discontinuous
mapping between v and w and, accordingly, F must be strictly proper for the architecture to be
well-posed (the same conclusion applies to C). Therefore, F must belong to RH2.

In Figure 3, denote the open loop transfer function from y to u by K, i.e., K � HE(1− C)−1. If
(H, C, F, E) ∈ S, then K must be an admissible one degree-of-freedom controller for G.4 Thus SK �
(1 − GK)−1 must contain as non-minimum phase (NMP) zeros all the unstable poles of H,E, G and

4That is, the closed loop that arises around G when u = Ky is internally stable and well-posed.
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(1−C)−1 (see Lemma 3.1.3 in [18]). Denote all the unstable poles of H, E and G by p̄i, i ∈ {1, · · · , np̄}.
Since S = SK(1− C)−1 we have from the Bode Integral Theorem [18] that, for any F ∈ RH2,

1
2π

�
π

−π

ln |(1− F )S|dω ≥
1
2π

�
π

−π

ln |S|dω =
np̄�

i=1

ln |p̄i| ≥

np�

i=1

ln |pi|. (13)

To complete the proof, we note that HSGE is the closed loop transfer function from a disturbance
at the input of H to the output y. By invoking the Youla-Kucera parametrization [19], we thus conclude
that HSGE must be as claimed. �

By virtue of Lemma 2, we are now ready to present a lower bound on the best achievable perfor-
mance

�
σ

2
y

�
Γ
. To that end, we will make use of the following mild additional assumption:

Assumption 3 In Problem 2, EH �= 0 at the optimum. �

If EH were identically zero at the optimum, then optimal performance would be achieved by leaving
G in open loop. The cases where this happens are clearly of no interest in a networked control setting.

Theorem 2 Consider the NCS of Figure 1 where the source coding scheme is linear, and suppose that

Assumptions 1 and 3 hold. Then,

�
σ

2
y

�
Γ
≥ inf

f∈M

Q∈RH∞

JΓ(f,Q) � JΓ,inf , (14)

where5

M �
�

f : D → R+
0 : ||f ||22 < Γ + 1, and

1
2π

�
π

−π

ln fdω ≥

np�

i=1

ln |pi|

�
, (15)

and

JΓ(f, Q) � ||WQ + Ωx||
2
2 +

�
1
2π

�
π

−π
|WQ| fdω

�2

Γ + 1− ||f ||22
, (16)

where WQ � NY Ωx−NDΩxQ, N,Y,D and pi are as in Lemma 2, Ωx � ξGΩd and ξ �
��np

i=1
z−pi

1−zpi

�

×

��
nc

j=1
1−zci
z−ci

�
, where ci denotes the i

th NMP zero of G. Moreover, the optimization problem on the

right hand side of (14) is convex (i.e., JΓ(·, ·) is a convex function of its arguments, and M ×RH∞

is a convex set).

Proof: Under our assumptions we have that, for any (H, C, F, E) ∈ S and σ
2
q
∈ R+, σ

2
y

and γ

exist and are given by

σ
2
y

= ||(1− C)SGΩd||
2
2 + σ

2
q
||GES(1− F )||22 , (17)

γ =
||HSGΩd||

2
2

σ2
q

+ ||(1− F )S||22 − 1, (18)

5D denotes the unit circle.
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and also that ||(1− F )S||22 ≤ γ + 1.
A simple contradiction-based argument shows that, since Assumption 3 holds, the SNR constraint

in (10) is active at the optimum. Hence, at the optimum,

||(1− F )S||22 < Γ + 1 (19)

and

σ
2
y

= ||(1− C)SGΩd||
2
2 +

||HSGΩd||
2
2 ||GES(1− F )||22

Γ + 1− ||(1− F )S||22
(20)

≥ ||((HGES + 1)GΩd||
2
2 +

�
1
2π

�
π

−π
|HSGE| |S(1− F )| |ΩdG| dω

�2

Γ + 1− ||(1− F )S||22
, (21)

where the first equality follows upon solving (18) for σ
2
q

with γ = Γ, and the inequality follows from the
Cauchy-Schwartz inequality and the fact that HSGE+1 = (1−C)S. If one defines f � |(1− F )S| and
notes that |ξ| = 1, then the first part of the result follows immediately from (21), (19) and Lemma 2.

To complete the proof we need to show that the optimization problem on the right hand side of
(14) is convex. Since WQ is an afine function of Q, and both RH∞ and M are convex, it follows from
Lemma 4 in [20] that JΓ(·, ·) is a convex function of its arguments. The proof is thus completed. �

Theorem 2 shows that one can calculate a lower bound on the best achievable performance subject
to an SNR constraint by solving a convex optimization problem. Convexity guarantees, among other
things, that the problem of finding the bound JΓ,inf , and also Qδ ∈ RH∞ and fδ ∈M such that, for
any δ > 0,

JΓ(fδ, Qδ) ≤ JΓ,inf + δ, (22)

can be addressed numerically using standard algorithms [21].

Remark 4 As an alternative to Problem 2, one can also consider the problem of finding the minimal

SNR subject to a performance constraint. By doing so, and by proceeding as in the proof of Theorem 2,

one arrives at an auxiliary optimization problem whose convexity we have not been able to prove yet.

�

We will next show that a solution of the optimization problem on the right hand side of (14)
actually yields a solution to Problem 2. To that end, we start by noting that the following holds:

Lemma 3 Consider Qδ ∈ RH∞ and fδ ∈M satisfying JΓ(fδ, Qδ) ≤ JΓ,inf + δ.

1. For any �1 > 0, there exist F̂δ,�1 ∈ RH2 such that
�np

i=1
1−zpi

z−pi
(1− F̂δ,�1) ∈ U∞ and

���
���fδ − |1− F̂δ,�1 |

���
���
2

2
≤ �1. (23)
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2. Consider X,N, Y and D as in Lemma 2, and define6

Kδ � (X −QδN)−1(Y −QδD), (24)

Sδ � z
n

den {Kδ} (1−GKδ)
, (25)

Fδ,�1 � 1−
1− F̂δ,�1

Sδ

. (26)

There exists Eδ,�2 ∈ RH∞ such that, for any �2 > 0,

�����

�����Eδ,�2 −

�
num {Kδ}Ωd

zn(1− Fδ,�1)

�����

�����

2

2

≤ �2. (27)

Proof:

1. Equation (23) follows by mimicking the proof of Lemma 1 in [22], and by using the definition of
M.

2. The Youla-Kucera parametrization guarantees that Kδ is an admissible one degree-of-freedom
controller for G. Thus, (1 − GKδ)−1 has as zeros all the unstable poles of both G and Kδ.
Accordingly, Sδ is stable, Sδ(∞) = 1, and Sδ has as NMP zeros the unstable plant poles only.
Given the definition of F̂δ,�1 , we thus conclude that Fδ,�1 ∈ RH2 and that (1 − Fδ,�1)−1 is also
stable. Since, by assumption, Ωd is stable, we have that

�
num {Kδ}Ωd(zn(1− Fδ,�1))−1 ∈ L2 is

analytic outside and on the unit circle and can thus be approximated to any degree of accuracy
�2 > 0 by a stable and proper Eδ,�2 . �

With the aid of Lemma 3 we can state the main result of this section:

Theorem 3 Consider the NCS of Figure 1 where the source coding scheme is linear, and recall the

notation introduced in Lemma 3. If Assumptions 1 and 3 hold, then
�
σ

2
y

�
Γ

= JΓ,inf . Moreover,

for any � > 0, there exists �1, �2, δ > 0 such that choosing Qδ ∈ RH∞ and fδ ∈ M satisfying

JΓ(fδ, Qδ) ≤ JΓ,inf + δ, Fδ,�1 as in (26) with F̂δ,�1 satisfying the conditions in Part 1 of Lemma 3, and

Eδ,�2 ∈ RH∞ satisfying (27), guarantees that the choice of parameters

F = Fδ,�1 , E = Eδ,�2 , H =
1− F

Ωd

E, (28)

C = 1−
den {Kδ}

zn
, (29)

σ
2
q

=
||HSδGΩd||

2
2

Γ + 1− ||(1− F )Sδ||
2
2

, (30)

defines a 4-tuple (H, C, F, E) ∈ S, σ
2
q
∈ R+

0 , and yields σ
2
y
≤ JΓ,inf + � whilst achieving γ = Γ.

6For any X ∈ Rp, num {X} and den {X} denote the corresponding numerator and monic denominator polynomials
(after all cancellations, if any, have been performed).

11



Proof: Our first claim follows immediately from the second, which is proved below.
Since H, E ∈ RH∞ and F,C ∈ RH2 (recall the definition of den {·}), it follows that the proposed

choice of parameters defines a well-posed feedback loop. We next show that the proposed choice of
parameters achieves internal stability. To do so, we first note that the open loop transfer function from
y to u is given by HE(1−C)−1 = Kδ. From the proof of Lemma 3, we know that Kδ is an admissible
one degree-of-freedom controller for G. As such, there exist no unstable pole-zero cancellations between
Kδ and G [18]. Moreover, it is clear by construction (see (28) and (29)) that there are no unstable
pole-zero cancellation among any two transfer functions in the set {H,E, (1−C)−1}. The above facts
imply that the closed loop is internally stable.

We next show that σ
2
q
∈ R+

0 . Equation (23) implies
���||fδ||

2
2 − ||1− Fδ,�1 ||

2
2

��� ≤ �1. (31)

Thus, since fδ ∈M, it follows that there exists a sufficiently small �1 > 0 such that ||(1 − F )Sδ||
2
2 =

||1 − F̂δ,�1 ||
2
2 < Γ + 1, where F̂δ,�1 satisfies the conditions in Part 1 of Lemma 3. On the other hand,

HSδGΩd is stable since Kδ is admissible for G and HΩd is stable. As a consequence of the above, σ
2
q

in (30) is finite and positive, as required.
The fact that our choice of parameters guarantees γ = Γ follows upon using (30) in (18), and noting

that S = Sδ.
To complete the proof, it remains to show that the proposed set of parameters is such that σ

2
y
≤

JΓ,inf + � for any � > 0. By definition of Eδ,�2 (see (27)), the choice for E in (28) is such that there
exists ∆E ∈ L2 such that

E =

�
num {Kδ}Ωd

zn(1− F )
+ ∆E, ||∆E||

2
2 ≤ �2. (32)

Thus,

H =

�
num {Kδ} (1− F )

znΩd

+
(1− F )

Ωd

∆E (33)

and the numerator of the second term on the right hand side of (20) can be written as

||HSGΩd||
2
2 ||GES(1− F )||22 =

�����

�����SG

�
num {Kδ} (1− F )Ωd

zn
+ (1− F )SG∆E

�����

�����

4

2

≤

�
1
2π

�
π

−π

����
num {Kδ}SG(ΩdG)

zn

���� |(1− F )S| dω

�2

+ α(�2)

=
�

1
2π

�
π

−π

|WQδ |

���1− F̂δ,�1

��� dω

�2

+ α(�2), (34)

12



where α, satisfying 0 ≤ α(�2) <∞, ∀�2 ∈ R+, is given by

α(�2) � M
2
�
2
2 + 2

�����

�����SG

�
num {Kδ} (1− F )Ωd

zn

�����

�����

2

2

M�2,

M � max
w∈[−π,π]

�����SG

�
num {Kδ} (1− F )Ωd

zn

�����

2

.

In (34), the first equality follows upon using (32) and (33), the inequality follows from the Cauchy-
Schwartz inequality, and the last equality follows from the fact that our choice of parameters guarantees
that S = Sδ and thus num {Kδ}SG(ΩdG)z−n = GKδ(1−GKδ) = WQδ (use the definition of WQδ and
Kδ), and from our choice for F and the definition of Fδ,�1 . By using the above facts and the identity
HSGE + 1 = (1− C)S we can write (20) as

σ
2
y
≤ ||WQδ + Ωx||

2
2 +

�
1
2π

�
π

−π
|WQδ |

���1− F̂δ,�1

��� dω

�2
+ α(�2)

Γ + 1−
���
���1− F̂δ,�1

���
���
2

2

. (35)

Now, note that (23) implies
���
���|1− F̂δ,�1 |− f

���
���
1
≤
√

�1. The latter inequality and (31) allow one to
rewrite, for sufficiently small �1, (35) as

σ
2
y
≤ ||WQδ + Ωx||

2
2 +

�
1
2π

�
π

−π
|WQδ | fδdω

�2
+ β(�1) + α(�2)

Γ + 1− ||fδ||
2
2 − �1

, (36)

where β, satisfying 0 ≤ β(�1) <∞, ∀�1 ∈ R+, is given by

β(�1) �
�

max
w∈[−π,π]

|WQ|

�2

�1 + 2
√

�1

�
max

w∈[−π,π]
|WQ|

�
1
2π

�
π

−π

|WQ| fδdω. (37)

The result follows immediately from (36). (Note that �2 depends upon �1 and, hence, has to be chosen,
once �1 is chosen.) �

Theorem 2 provides a characterization of the solution of Problem 2. In the next section, we will
use this result to characterize bounds on RD.

5 Bounds on the Minimal Average Data-rate needed to Achieve

a Given Performance Level

This section presents a characterization of the solution of Problem 1. In particular, we present both
upper and lower bounds on RD, and also a specific implementation of a linear source coding scheme
that achieves an average data-rate that is guaranteed to be below our upper bound.

We start by stating the following auxiliary result:

13



Lemma 4 Consider the NCS of Figure 1 where the source coding scheme is linear, and suppose that

Assumptions 1 and 3 hold. Define

γD � inf
(H,C,F,E)∈S,σ

2
q∈R+

σ
2
y≤D

γ, (38)

where all symbols are as defined before. Then, γ[σ2
y]Γ

= Γ.

Proof: By solving Problem 1 one finds a set of parameters such that σ
2
y

=
ˆ
σ

2
y

˜
Γ

and γ = Γ (recall
that Assumption 3 guarantees that the SNR constraint is active at the optimum). It is therefore
immediate to see that, by definition, γ

[σ2
y]Γ

> Γ is impossible. Assume now that Qo and fo are the
parameters that minimize Jγ[σ2

y ]Γ
(f, Q). Then, since the SNR constraint in Problem 2 is active at the

optimum, we have that

γ[σ2
y]Γ

< Γ⇒ Jγ[σ2
y ]Γ

(Qo, fo) > JΓ(Qo, fo), (39)

which contradicts the optimality of Qo and fo. We thus see that γ[σ2
y]Γ

= Γ. �

Lemma 4 shows that Problem 2 is equivalent to the problem of finding γD in (38). That is, if some
choice of the parameters (H,C, F,E) and σ

2
q

solve Problem 2 and thus achieve a performance level
σ

2
y

=
ˆ
σ

2
y

˜
Γ

and an SNR γ = Γ, then the same parameters optimize the SNR γ subject to the constraint
σ

2
y
≤

ˆ
σ

2
y

˜
Γ

.
We are now in a position to present the main result of this paper:

Theorem 4 Consider the setup and assumptions of Problem 1. If, in addition, Assumption 3 holds

and
�
σ

2
y

�
Γ

= D
∗, then RD∗ ≥

1
2 ln (1 + Γ). Moreover, there exists a linear source coding scheme such

that R <
1
2 ln (1 + Γ) + 1

2 ln
�

2πe

12

�
+ ln 2, while satisfying σ

2
y

= D
∗ + � for any � > 0.

Proof: Our first claim is immediate from Theorems 1 and 3, and Lemmas 1 and 4.
We now prove our second claim. Use Theorem 3 to find filters (H, C, F, E) = (Ho, Co, Fo, Eo) and

a noise variance σ
2
q

= σ
2
o

such that γ = Γ and σ
2
y

= D
∗ + � for the desired value of � > 0. Consider an

entropy coded dithered quantizer (ECDQ) [23] as the link between v and w, i.e., pick blocks E, D, H

and H
−1 in Figure 4 such that

s(k) = Q(v(k) + dh(k)), sc(k) = Hk(s(k), dh(k)),

ŝ(k) = H
−1
k

(sc(k), dh(k)), w(k) = ŝ(k)− dh(k),

where dh is a dither signal available at both the encoder and decoder sides (accordingly, SE(k) =
SD(k) = SH(k) = dh(k)), Q : R → {i∆; i ∈ Z} corresponds to a uniform quantizer with step size
∆ ∈ R+, Hk corresponds to the mapping describing an entropy-coder (also called loss-less encoder [15,
Ch.5]) whose output symbol is chosen using the conditional distribution of s(k), given dh(k), and H

−1
k

corresponds to the mapping describing the entropy-decoder that is complementary to the entropy-coder
at the encoder side. If dh is an i.i.d. sequence, independent of (xo, d), and uniformly distributed on
(−∆/2, ∆/2), with ∆ =

�
12σ2

o
, then our claim follows from Corollary 3 in [8]. �
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Theorem 4 establishes a lower bound on the minimal average data-rate that is needed to achieve a
given performance level, when linear source coding schemes are employed to control SISO LTI plants.
This lower bound is not tight, but the worst case gap is given by 1

2 ln
�

2πe

12

�
+ ln 2 nats per sample

(i.e., ≈ 1.254 bits per sample). The first term of this gap corresponds to the divergence of the ECDQ
quantization noise q from Gaussianity, and appears due to the fact that ECDQs generate uniform
and not Gaussian coding noise. The second term arises because practical entropy-coders (see proof
of Theorem 4) are not perfectly efficient [15, Chapter 5]. (A detailed discussion of these facts can be
found in [7,8].) Since we constrain ourselves to a simple class of source coding schemes, this gap seems
inescapable but, in our view, it is a fair price to be paid given the simplicity of our approach.

A key aspect of our results is that they are built upon the solution of an SNR optimization problem.
This is a key feature of our work, and allows one to easily provide average data-rate guarantees in
feedback loops, by using standard control system design techniques.

Remark 5 If in Problem 1 one removes the performance constraint σ
2
e
≤ D, then the problem reduces

to the calculation of the minimal average data-rate that is compatible with mean square stability, say

RMSS. By using Theorem 17 in [10], and proceeding as in the proof of Theorem 4, it follows that, for

the setup and assumptions of the latter theorem,

np�

i=1

ln |pi| ≤ RMSS <

np�

i=1

ln |pi|+
1
2

ln
�

2πe

12

�
+ ln 2,

where pi is i
th unstable pole of G. That is, independent source coding schemes can achieve MSS at

average data-rates that are at most
1
2 ln

�
2πe

12

�
+ ln 2 nats per sample away from the absolute lower

bound established in [2]. �

6 Conclusions

This paper has studied control systems closed over noiseless digital channels. By focusing on a class of
source coding schemes, we have established lower and upper bounds on the minimal average data-rate
needed to achieve a prescribed performance level. Instrumental to our result was the characterization
of the minimal SNR that guarantees a given closed loop performance in a related LTI control system.

Future work should focus on situations that include causal but otherwise unrestricted source coding
schemes. Extensions to the MIMO case are also under study by the authors.
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