313,864 research outputs found

    Cognitive Assessment System (CAS): Psychometric studies with Portuguese children from 7 to 15 years.

    Get PDF
    The Cognitive Assessment System (CAS) is a new measure of cognitive abilities based on the Planning, Attention, Simultaneous and Successive (PASS) Theory. This theory is derived from research in neuropsychological and cognitive Psychology with particular emphasis on the work of Luria (1973). According to Naglieri (1999) and Naglieri and Das (1997), the PASS cognitive processes are the basic building blocks of human intellectual functioning. Planning processes provide cognitive control, utilization of processes and knowledge, intentionality, and self-regulation to achieve a desired goal; Attention processes provide focused, selective cognitive activity and resistance to distraction; and, Simultaneous and Successive processes are the two forms of operating on information. The PASS theory has had a strong empirical base prior to the publication of the CAS (see Das, Naglieri & Kirby, 1994), and its research foundation remains strong (see Naglieri, 1999; Naglieri & Das, 1997). The four basic psychological processes can be used to (1) gain an understanding of how well a child thinks; (2) discover the child’s strengths and needs, which can then be used for effective differential diagnosis; (3) conduct fair assessment; and (4) select or design appropriate interventions. Compared to the traditional intelligence tests, including IQ tests, the Cognitive Assessment System (CAS) has the great advantage of relying on a modern theory of cognitive functioning, linking theory with practice

    Extreme Temperature Switch Mode Power Supply Based on Vee-square Control Using Silicon Carbide, Silicon on Sapphire, Hybrid Technology

    Get PDF
    Switch mode power supplies, commonly known as SMPS are basic building blocks of the electronic systems. SMPS performs power regulation by accepting a raw input voltage and transforming it to required voltage at output with desired characteristics. Electronic systems used in applications such as deep well oil drilling, geothermal wells and deep space explorations is expected to operate under extremely harsh conditions like elevated temperature, high pressure and radiation prone environments. To support the onboard electronics in these applications, SMPS capable of operating at extreme temperatures are of high interest.This research work deals with the design and development of a switch mode power supply capable of operating over the temperature range of 300 degree centigrade (�C). Silicon carbide field effect transistors are used as power devices in the design to tolerate these extreme high ambient temperatures without compromising power handling capability. The simplest yet robust vee square control architecture is adopted for control mechanism. The control electronics are implemented as an integrated circuit in 0.5 �m silicon on sapphire process. The supporting components like high temperature tolerant inductors and capacitors are identified by evaluating various samples at elevated temperature. This is the first demonstration of SMPS capable of operating at 275�C as a standalone component. Also for the first time, a gate drive mechanism based on planar transformer architecture is studied and presented for high temperature operation. A low cost packaging technique suited for harsh environment operation is proposed based on gold on aluminum nitride thin film technology. The basic analog building blocks of the system, such as comparator, voltage reference and rail-to-rail amplifiers are made available in discrete packages for use at temperatures above 275�C. A SMPS prototype on a 1.8 square inches substrate is developed and tested. Test results indicate that the system is capable of operating continuously at 275�C for extended period of time, providing the desired performance characteristics.School of Electrical & Computer Engineerin

    Building Blocks for Spikes Signals Processing

    Get PDF
    Neuromorphic engineers study models and implementations of systems that mimic neurons behavior in the brain. Neuro-inspired systems commonly use spikes to represent information. This representation has several advantages: its robustness to noise thanks to repetition, its continuous and analog information representation using digital pulses, its capacity of pre-processing during transmission time, ... , Furthermore, spikes is an efficient way, found by nature, to codify, transmit and process information. In this paper we propose, design, and analyze neuro-inspired building blocks that can perform spike-based analog filters used in signal processing. We present a VHDL implementation for FPGA. Presented building blocks take advantages of the spike rate coded representation to perform a massively parallel processing without complex hardware units, like floating point arithmetic units, or a large memory. Those low requirements of hardware allow the integration of a high number of blocks inside a FPGA, allowing to process fully in parallel several spikes coded signals.Junta de Andalucía P06-TIC-O1417Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    A Generic Storage API

    Get PDF
    We present a generic API suitable for provision of highly generic storage facilities that can be tailored to produce various individually customised storage infrastructures. The paper identifies a candidate set of minimal storage system building blocks, which are sufficiently simple to avoid encapsulating policy where it cannot be customised by applications, and composable to build highly flexible storage architectures. Four main generic components are defined: the store, the namer, the caster and the interpreter. It is hypothesised that these are sufficiently general that they could act as building blocks for any information storage and retrieval system. The essential characteristics of each are defined by an interface, which may be implemented by multiple implementing classes.Comment: Submitted to ACSC 200

    Architectures for Wireless Sensor Networks

    Get PDF
    Various architectures have been developed for wireless sensor networks. Many of them leave to the programmer important concepts as the way in which the inter-task communication and dynamic reconfigurations are addressed. In this paper we describe the characteristics of a new architecture we proposed - the data-centric architecture. This architecture offers an easy way of structuring the applications designed for wireless sensor nodes that confers them superior performances
    corecore