6 research outputs found

    UML models consistency management: guidelines for software quality manager

    No full text
    Unified Modeling Language (UML) has become the de-facto standard to design today’s large-size object-oriented systems. However, focusing on multiple UML diagrams is a main cause of breaching the consistency problem, which ultimately reduces the overall software model’s quality. Consistency management techniques are widely used to ensure the model consistency by correct model-to-model and model-to-code transformation. Consistency management becomes a promising area of research especially for model-driven architecture. In this paper, we extensively review UML consistency management techniques. The proposed techniques have been classified based on the parameters identified from the research literature. Moreover, we performed a qualitative comparison of consistency management techniques in order to identify current research trends, challenges and research gaps in this field of study. Based on the results, we concluded that researchers have not provided more attention on exploring inter-model and semantic consistency problems. Furthermore, state-of-the-art consistency management techniques mostly focus only on three UML diagrams (i.e., class, sequence and state chart) and the remaining UML diagrams have been overlooked. Consequently, due to this incomplete body of knowledge, researchers are unable to take full advantage of overlooked UML diagrams, which may be otherwise useful to handle the consistency management challenge in an efficient manner

    Isolation and distinctiveness in the design of e-learning systems influence user preferences

    Get PDF
    When faced with excessive detail in an online environment, typical users have difficulty processing all the elements of representation. This in turn creates cognitive overload, which narrows the user's focus to a few select items.In the context of e-learning, we translated this aspect as the learner's demand for a system that facilitates the retrieval of learning content – one in which the representation is easy to read and understand.We hypothesized that the representation of content in an e-learning system's design is an important antecedent for learner preferences.The aspects of isolation and distinctiveness were incorporated into the design of e-learning representation as an attempt to promote student cognition.Following its development, the model was empirically validated by conducting a survey of 300 university students. We found that isolation and distinctiveness in the design elements appeared to facilitate the ability of students to read and remember online learning content. This in turn was found to drive user preferences for using e-learning systems.The findings provide designers with managerial insights for enticing learners to continue using e-learning systems

    Functional Size Measurement and Model Verification for Software Model-Driven Developments: A COSMIC-based Approach

    Full text link
    Historically, software production methods and tools have a unique goal: to produce high quality software. Since the goal of Model-Driven Development (MDD) methods is no different, MDD methods have emerged to take advantage of the benefits of using conceptual models to produce high quality software. In such MDD contexts, conceptual models are used as input to automatically generate final applications. Thus, we advocate that there is a relation between the quality of the final software product and the quality of the models used to generate it. The quality of conceptual models can be influenced by many factors. In this thesis, we focus on the accuracy of the techniques used to predict the characteristics of the development process and the generated products. In terms of the prediction techniques for software development processes, it is widely accepted that knowing the functional size of applications in order to successfully apply effort models and budget models is essential. In order to evaluate the quality of generated applications, defect detection is considered to be the most suitable technique. The research goal of this thesis is to provide an accurate measurement procedure based on COSMIC for the automatic sizing of object-oriented OO-Method MDD applications. To achieve this research goal, it is necessary to accurately measure the conceptual models used in the generation of object-oriented applications. It is also very important for these models not to have defects so that the applications to be measured are correctly represented. In this thesis, we present the OOmCFP (OO-Method COSMIC Function Points) measurement procedure. This procedure makes a twofold contribution: the accurate measurement of objectoriented applications generated in MDD environments from the conceptual models involved, and the verification of conceptual models to allow the complete generation of correct final applications from the conceptual models involved. The OOmCFP procedure has been systematically designed, applied, and automated. This measurement procedure has been validated to conform to the ISO 14143 standard, the metrology concepts defined in the ISO VIM, and the accuracy of the measurements obtained according to ISO 5725. This procedure has also been validated by performing empirical studies. The results of the empirical studies demonstrate that OOmCFP can obtain accurate measures of the functional size of applications generated in MDD environments from the corresponding conceptual models.Marín Campusano, BM. (2011). Functional Size Measurement and Model Verification for Software Model-Driven Developments: A COSMIC-based Approach [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11237Palanci

    Example-based model refactoring using heuristic search

    Get PDF
    Software maintenance is considered the most expensive activity in software systems development: more than 80% of the resources are devoted to it. During the maintenance activities, software models are very rarely taken into account. The evolution of these models and the transformations that manipulate them are at the heart of model-driven engineering (MDE). However, as the source code, the model changes and tends to become increasingly complex. These changes generally have a negative impact on the quality of models and they cause damage to the software. In this context, refactoring is the most used technique to maintain an adequate quality of these models. The refactoring process is usually done in two steps: the detection of elements of the model to correct (design defects), then the correction of these elements. In this thesis, we propose two main contributions related to detection and correction of defects in class diagrams. The first contribution aims to automate the design defect detection. We propose to adapt genetic algorithms (e.g., genetic programming) to detect parts of the model that may correspond to design defects. The second contribution concerns the automation of the correction of these design defects. We propose to adapt three heuristic methods to suggest refactorings: 1. A single-objective optimization method based on structural similarities between a given model (i.e., the model to be refactored) and a set of examples of models (i.e., models that have undergone some refactorings); 2. An interactive single-objective optimization method based on structural similarity and the opinion of the designer; and 3. A multi-objective optimization method that maximizes both the structural and semantic similarities between the model under study and the models in the set of examples. All the proposed methods were implemented and evaluated on models generated from existing open-source projects and the obtained results confirm their efficiency

    On OO Design Consistency in Iterative Development

    No full text
    In agile software development practices, the system evolves iteratively but does so in a manner consistent with its design rationale. Evolution often begins with last known design representation because it provides a high level view of the system that is easy to understand. However, the impact of a design change is poorly understood in terms of it's effect on consistency of design. In fact, design evolution presents three important issues: consistency amongst design representations, traceability of a design change in code in order to maintain consistency and versioning of design entities along with versioning of code. In this effort, we propose a solution to the first two issues using a relational meta-model of various design & code entities and an algorithm to check consistency over this relational meta-model.© IEE
    corecore