8,046 research outputs found

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    On Efficient Distributed Construction of Near Optimal Routing Schemes

    Full text link
    Given a distributed network represented by a weighted undirected graph G=(V,E)G=(V,E) on nn vertices, and a parameter kk, we devise a distributed algorithm that computes a routing scheme in (n1/2+1/k+D)no(1)(n^{1/2+1/k}+D)\cdot n^{o(1)} rounds, where DD is the hop-diameter of the network. The running time matches the lower bound of Ω~(n1/2+D)\tilde{\Omega}(n^{1/2}+D) rounds (which holds for any scheme with polynomial stretch), up to lower order terms. The routing tables are of size O~(n1/k)\tilde{O}(n^{1/k}), the labels are of size O(klog2n)O(k\log^2n), and every packet is routed on a path suffering stretch at most 4k5+o(1)4k-5+o(1). Our construction nearly matches the state-of-the-art for routing schemes built in a centralized sequential manner. The previous best algorithms for building routing tables in a distributed small messages model were by \cite[STOC 2013]{LP13} and \cite[PODC 2015]{LP15}. The former has similar properties but suffers from substantially larger routing tables of size O(n1/2+1/k)O(n^{1/2+1/k}), while the latter has sub-optimal running time of O~(min{(nD)1/2n1/k,n2/3+2/(3k)+D})\tilde{O}(\min\{(nD)^{1/2}\cdot n^{1/k},n^{2/3+2/(3k)}+D\})
    corecore