5,322 research outputs found

    Differences of Harmonic Numbers and the abcabc-Conjecture

    Get PDF
    Our main source of inspiration was a talk by Hendrik Lenstra on harmonic numbers, which are numbers whose only prime factors are two or three. Gersonides proved 675 years ago that one can be written as a difference of harmonic numbers in only four ways: 2-1, 3-2, 4-3, and 9-8. We investigate which numbers other than one can or cannot be written as a difference of harmonic numbers and we look at their connection to the abcabc-conjecture. We find that there are only eleven numbers less than 100 that cannot be written as a difference of harmonic numbers (we call these ndhndh-numbers). The smallest ndhndh-number is 41, which is also Euler's largest lucky number and is a very interesting number. We then show there are infinitely many ndhndh-numbers, some of which are the primes congruent to 4141 modulo 4848. For each Fermat or Mersenne prime we either prove that it is an ndhndh-number or find all ways it can be written as a difference of harmonic numbers. Finally, as suggested by Lenstra in his talk, we interpret Gersonides' theorem as "The abcabc-conjecture is true on the set of harmonic numbers" and we expand the set on which the abcabc-conjecture is true by adding to the set of harmonic numbers the following sets (one at a time): a finite set of ndhndh-numbers, the infinite set of primes of the form 48k+4148k+41, the set of Fermat primes, and the set of Mersenne primes.Comment: 13 pages, 1 figur

    Parallelization of Modular Algorithms

    Get PDF
    In this paper we investigate the parallelization of two modular algorithms. In fact, we consider the modular computation of Gr\"obner bases (resp. standard bases) and the modular computation of the associated primes of a zero-dimensional ideal and describe their parallel implementation in SINGULAR. Our modular algorithms to solve problems over Q mainly consist of three parts, solving the problem modulo p for several primes p, lifting the result to Q by applying Chinese remainder resp. rational reconstruction, and a part of verification. Arnold proved using the Hilbert function that the verification part in the modular algorithm to compute Gr\"obner bases can be simplified for homogeneous ideals (cf. \cite{A03}). The idea of the proof could easily be adapted to the local case, i.e. for local orderings and not necessarily homogeneous ideals, using the Hilbert-Samuel function (cf. \cite{Pf07}). In this paper we prove the corresponding theorem for non-homogeneous ideals in case of a global ordering.Comment: 16 page

    Parallel algorithms for normalization

    Full text link
    Given a reduced affine algebra A over a perfect field K, we present parallel algorithms to compute the normalization \bar{A} of A. Our starting point is the algorithm of Greuel, Laplagne, and Seelisch, which is an improvement of de Jong's algorithm. First, we propose to stratify the singular locus Sing(A) in a way which is compatible with normalization, apply a local version of the normalization algorithm at each stratum, and find \bar{A} by putting the local results together. Second, in the case where K = Q is the field of rationals, we propose modular versions of the global and local-to-global algorithms. We have implemented our algorithms in the computer algebra system SINGULAR and compare their performance with that of the algorithm of Greuel, Laplagne, and Seelisch. In the case where K = Q, we also discuss the use of modular computations of Groebner bases, radicals, and primary decompositions. We point out that in most examples, the new algorithms outperform the algorithm of Greuel, Laplagne, and Seelisch by far, even if we do not run them in parallel.Comment: 19 page

    Improved algorithm for computing separating linear forms for bivariate systems

    Get PDF
    We address the problem of computing a linear separating form of a system of two bivariate polynomials with integer coefficients, that is a linear combination of the variables that takes different values when evaluated at the distinct solutions of the system. The computation of such linear forms is at the core of most algorithms that solve algebraic systems by computing rational parameterizations of the solutions and this is the bottleneck of these algorithms in terms of worst-case bit complexity. We present for this problem a new algorithm of worst-case bit complexity \sOB(d^7+d^6\tau) where dd and Ď„\tau denote respectively the maximum degree and bitsize of the input (and where \sO refers to the complexity where polylogarithmic factors are omitted and OBO_B refers to the bit complexity). This algorithm simplifies and decreases by a factor dd the worst-case bit complexity presented for this problem by Bouzidi et al. \cite{bouzidiJSC2014a}. This algorithm also yields, for this problem, a probabilistic Las-Vegas algorithm of expected bit complexity \sOB(d^5+d^4\tau).Comment: ISSAC - 39th International Symposium on Symbolic and Algebraic Computation (2014
    • …
    corecore