332 research outputs found

    The Noisy Power Method: A Meta Algorithm with Applications

    Full text link
    We provide a new robust convergence analysis of the well-known power method for computing the dominant singular vectors of a matrix that we call the noisy power method. Our result characterizes the convergence behavior of the algorithm when a significant amount noise is introduced after each matrix-vector multiplication. The noisy power method can be seen as a meta-algorithm that has recently found a number of important applications in a broad range of machine learning problems including alternating minimization for matrix completion, streaming principal component analysis (PCA), and privacy-preserving spectral analysis. Our general analysis subsumes several existing ad-hoc convergence bounds and resolves a number of open problems in multiple applications including streaming PCA and privacy-preserving singular vector computation.Comment: NIPS 201

    Online and Differentially-Private Tensor Decomposition

    Get PDF
    In this paper, we resolve many of the key algorithmic questions regarding robustness, memory efficiency, and differential privacy of tensor decomposition. We propose simple variants of the tensor power method which enjoy these strong properties. We present the first guarantees for online tensor power method which has a linear memory requirement. Moreover, we present a noise calibrated tensor power method with efficient privacy guarantees. At the heart of all these guarantees lies a careful perturbation analysis derived in this paper which improves up on the existing results significantly.Comment: 19 pages, 9 figures. To appear at the 30th Annual Conference on Advances in Neural Information Processing Systems (NIPS 2016), to be held at Barcelona, Spain. Fix small typos in proofs of Lemmas C.5 and C.

    Convex Optimization for Linear Query Processing under Approximate Differential Privacy

    Full text link
    Differential privacy enables organizations to collect accurate aggregates over sensitive data with strong, rigorous guarantees on individuals' privacy. Previous work has found that under differential privacy, computing multiple correlated aggregates as a batch, using an appropriate \emph{strategy}, may yield higher accuracy than computing each of them independently. However, finding the best strategy that maximizes result accuracy is non-trivial, as it involves solving a complex constrained optimization program that appears to be non-linear and non-convex. Hence, in the past much effort has been devoted in solving this non-convex optimization program. Existing approaches include various sophisticated heuristics and expensive numerical solutions. None of them, however, guarantees to find the optimal solution of this optimization problem. This paper points out that under (ϵ\epsilon, δ\delta)-differential privacy, the optimal solution of the above constrained optimization problem in search of a suitable strategy can be found, rather surprisingly, by solving a simple and elegant convex optimization program. Then, we propose an efficient algorithm based on Newton's method, which we prove to always converge to the optimal solution with linear global convergence rate and quadratic local convergence rate. Empirical evaluations demonstrate the accuracy and efficiency of the proposed solution.Comment: to appear in ACM SIGKDD 201

    Optimizing Batch Linear Queries under Exact and Approximate Differential Privacy

    Full text link
    Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result, such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the accuracy of the query results, while satisfying the privacy guarantees. Previous work, notably \cite{LHR+10}, has suggested that with an appropriate strategy, processing a batch of correlated queries as a whole achieves considerably higher accuracy than answering them individually. However, to our knowledge there is currently no practical solution to find such a strategy for an arbitrary query batch; existing methods either return strategies of poor quality (often worse than naive methods) or require prohibitively expensive computations for even moderately large domains. Motivated by this, we propose low-rank mechanism (LRM), the first practical differentially private technique for answering batch linear queries with high accuracy. LRM works for both exact (i.e., ϵ\epsilon-) and approximate (i.e., (ϵ\epsilon, δ\delta)-) differential privacy definitions. We derive the utility guarantees of LRM, and provide guidance on how to set the privacy parameters given the user's utility expectation. Extensive experiments using real data demonstrate that our proposed method consistently outperforms state-of-the-art query processing solutions under differential privacy, by large margins.Comment: ACM Transactions on Database Systems (ACM TODS). arXiv admin note: text overlap with arXiv:1212.230
    corecore